Хлорная кислота строение молекулы. Хлорноватистая кислота НClO. Влияние на организм

Хлор — элемент 3-го периода и VII А-группы Периодической системы, порядковый номер 17. Электронная формула атома [ 10 Ne ]3s 2 Зр 5 , характерные степени окисления 0, -1, + 1, +5 и +7. Наиболее устойчиво состояние Cl -1 . Шкала степеней окисления хлора:

7 – Cl 2 O 7 , ClO 4 — ,HClO 4 , KClO 4

5 — ClO 3 — , HClO 3 ,KClO 3

1 – Cl 2 O , ClO — , HClO , NaClO , Ca(ClO) 2

— 1 – Cl — , HCl, KCl , PCl 5

Хлор обладает высокой электроотрицательностью (2,83), проявляет неметаллические свойства. Входит в состав многих веществ — оксидов, кислот, солей, бинарных соединений.

В природе — двенадцатый по химической распространенности элемент (пятый среди неметаллов). Встречается только в химически связанном виде. Третий по содержанию элемент в природных водах (после О и Н), особенно много хлора в морской воде (до 2 % по массе). Жизненно важный элемент для всех организмов.

Хлор С1 2 . Простое вещество. Желто-зеленый газ с резким удушливым запахом. Молекула Сl 2 неполярна, содержит σ-связь С1-С1. Термически устойчив, негорюч на воздухе; смесь с водородом взрывается на свету (водород сгорает в хлоре):

Cl 2 +H 2 ⇌HCl

Хорошо растворим в воде, подвергается в ней дисмутации на 50 % и полностью — в щелочном растворе:

Cl 2 0 +H 2 O ⇌HCl I O+HCl -I

Cl 2 +2NaOH (хол) = NaClO+NaCl+H 2 O

3Cl 2 +6NaOH (гор) =NaClO 3 +5NaCl+H 2 O

Раствор хлора в воде называют хлорной водой , на свету кислота НСlO разлагается на НСl и атомарный кислород О 0 , поэтому «хлорную воду» надо хранить в темной склянке. Наличием в «хлорной воде» кислоты НСlO и образованием атомарного кислорода объясняются ее сильные окислительные свойства: например, во влажном хлоре обесцвечиваются многие красители.

Хлор очень сильный окислитель по отношению к металлам и неметаллам:

Сl 2 + 2Nа = 2NаСl 2

ЗСl 2 + 2Fе→2FеСl 3 (200 °С)

Сl 2 +Se=SeCl 4

Сl 2 + РЬ→PbCl 2 (300 ° С )

5Cl 2 +2P→2PCl 5 (90 °С)

2Cl 2 +Si→SiCl 4 (340 °С)

Реакции с соединениями других галогенов:

а) Сl 2 + 2КВг (Р) = 2КСl + Вr 2 (кипячение)

б) Сl 2 (нед.) + 2КI (р) = 2КСl + I 2 ↓

ЗСl (изб.) + 3Н 2 O+ КI = 6НСl + КIO 3 (80 °С)

Качественная реакция — взаимодействие недостатка СL 2 с КI (см. выше) и обнаружение йода по синему окрашиванию после добавления раствора крахмала.

Получение хлора в промышленности :

2NаСl (расплав) → 2Nа + Сl 2 (электролиз)

2NaCl+ 2Н 2 O→Н 2 + Сl 2 + 2NаОН (электролиз)

и в лаборатории :

4НСl (конц.) + МnO 2 = Сl 2 + МnСl 2 + 2Н 2 O

(аналогично с участием других окислителей; подробнее см. реакции для НСl и NaСl).

Хлор относится к продуктам основного химического производства, используется для получения брома и йода, хлоридов и кислородсодержащих производных, для отбеливания бумаги, как дезинфицирующее средство для питьевой воды. Ядовит.

Хлороводород НС l . Бескислородная кислота. Бесцветный газ с резким запахом, тяжелее воздуха. Молекула содержит ковалентную σ -связь Н — Сl. Термически устойчив. Очень хорошо растворим в воде; разбавленные растворы называются хлороводородной кислотой , а дымящий концентрированный раствор (35-38 %)- соляной кислотой (название дано еще алхимиками). Сильная кислота в растворе, нейтрализуется щелочами и гидратом аммиака. Сильный восстановитель в концентрированном растворе (за счет Сl — I), слабый окислитель в разбавленном растворе (за счет Н I). Составная часть «царской водки».

Качественная реакция на ион Сl — — образование белых осадков АgСl и Нg 2 Сl 2 , которые не переводятся в раствор действием разбавленной азотной кислоты.

Хлороводород служит сырьем в производстве хлоридов, хлорорганических продуктов, используется (в виде раствора) при травлении металлов, разложении минералов и руд. Уравнения важнейших реакций:

НСl (разб.) + NаОН (разб.) = NaСl + Н 2 O

НСl (разб.) + NН 3 Н 2 O = NH 4 Сl + Н 2 O

4НСl (конц., гор.) + МO 2 = МСl 2 + Сl 2 + 2Н 2 O (М = Мп, РЬ)

16НСl (конц., гор.) + 2КМnO 4(т) = 2МnСl 2 + 5Сl 2 + 8Н 2 O + 2КСl

14НСl (конц.) + К 2 Сr 2 O 7(т) = 2СrСl 3 + ЗСl 2 + 7Н 2 O + 2КСl

6НСl (конц.) + КСlO 3(Т) = КСl + ЗСl 2 + 3Н 2 O (50-80 °С)

4НСl (конц.) + Са(СlO) 2(т) = СаСl 2 + 2Сl 2 + 2Н 2 O

2НСl (разб.) + М = МСl 2 + H 2 (М = Ре, 2п)

2НСl (разб.) + МСO 3 = МСl 2 + СO 2 + Н 2 O (М = Са, Ва)

НСl (разб.) + АgNO 3 = НNO 3 + АgСl↓

Получение НСl в промышленности — сжигание Н 2 в Сl 2 (см.), в лаборатории — вытеснение из хлоридов серной кислотой:

NаСl (т) + Н 2 SO4 (конц.) = NаНSO 4 + НС l (50 °С)

2NaСl (т) + Н 2 SO 4 (конц.) = Nа 2 SO 4 + 2НСl (120 °С)

Хлориды

Хлорид натрия Na Сl . Бескислородная соль. Бытовое название поваренная соль . Белый, слабогигроскопичный. Плавится и кипит без разложения. Умеренно растворим в воде, растворимость мало зависит от температуры, раствор имеет характерный соленый вкус. Гидролизу не подвергается. Слабый восстановитель. Вступает в реакции ионного обмена. Подвергается электролизу в расплаве и растворе.

Применяется для получения водорода, натрия и хлора, соды, едкого натра и хлороводорода, как компонент охлаждающих смесей, пищевой продукт и консервирующее средство.

В природе — основная часть залежей каменной соли, или галита , и сильвинита (вместе с КСl),рапы соляных озер, минеральных примесей морской воды (содержание NaСl=2,7%). В промышленности получают выпариванием природных рассолов.

Уравнения важнейших реакций:

2NаСl (т) + 2Н 2 SO 4 (конц.) + МnO 2(т) = Сl 2 + МnSO 4 + 2Н 2 O + Na 2 SO 4 (100 °С)

10NаСl (т) + 8Н 2 SO 4 (конц.) + 2КМnO 4(т) = 5Сl 2 + 2МnSO 4 + 8Н 2 О + 5Nа 2 SO 4 + К 2 SO 4 (100°С)

6NaСl (Т) + 7Н 2 SO 4 (конц.) + К 2 Сr 2 O 7(т) = 3Сl 2 + Сr 2 (SO 4) 3 + 7Н 2 O+ ЗNа 2 SO 4 + К 2 SO 4 (100 °С)

2NаСl (т) + 4Н 2 SO 4 (конц.) + РЬO 2(т) = Сl 2 + Рb(НSO 4) 2 + 2Н 2 O + 2NaНSO 4 (50 °С)

NaСl (разб.) + АgNO 3 = NaNО 3 + АgСl↓

NaCl (ж) →2Na+Cl 2 (850°С, электролиз)

2NаСl + 2Н 2 O→Н 2 + Сl 2 + 2NаОН (электролиз)

2NаСl (р,20%) → Сl 2 + 2 N а(Н g ) “амальгама” (электролиз,на Hg -катоде)

Хлорид калия КСl . Бескислородная соль. Белый, негигроскопичный. Плавится и кипит без разложения. Умеренно растворим в воде, раствор имеет горький вкус, гидролиза нет. Вступает в реакции ионного обмена. Применяется как калийное удобрение, для получения К, КОН и Сl 2 . В природе основная составная часть (наравне с NаСl) залежей сильвинита .

Уравнения важнейших реакций одинаковы с таковыми для NаСl.

Хлорид кальция СаСl 2 . Бескислородная соль. Белый, плавится без разложения. Расплывается на воздухе за счет энергичного поглощения влаги. Образует кристаллогидрат СаСl 2 6Н 2 О с температурой обезвоживания 260 °С. Хорошо растворим в воде, гидролиза нет. Вступает в реакции ионного обмена. Применяется для осушения газов и жидкостей, приготовления охлаждающих смесей. Компонент природных вод, составная часть их «постоянной» жесткости.

Уравнения важнейших реакций:

СаСl 2(Т) + 2Н 2 SO 4 (конц.) = Са(НSO 4) 2 + 2НСl (50 °С)

СаСl 2(Т) + Н 2 SO 4 (конц.) = СаSO 4 ↓+ 2НСl (100 °С)

СаСl 2 + 2NaОН (конц.) = Са(ОН) 2 ↓+ 2NaCl

ЗСаСl 2 + 2Nа 3 РO 4 = Са 3 (РO 4) 2 ↓ + 6NaCl

СаСl 2 + К 2 СO 3 = СаСО 3 ↓ + 2КСl

СаСl 2 + 2NaF = СаF 2 ↓+ 2NаСl

СаСl 2(ж) → Са + Сl 2 (электролиз,800°С)

Получение:

СаСО 3 + 2НСl = СаСl 2 + СO 3 + Н 2 O

Хлорид алюминия АlСl 3 . Бескислородная соль. Белый, легкоплавкий,сильнолетучий. В паре состоит из ковалентных мономеров АlСl 3 (треугольное строение,sр 2 гибридизация, преобладают при 440-800 °С) и димеров Аl 2 Сl 6 (точнее, Сl 2 АlСl 2 АlСl 2 , строение — два тетраэдра с общим ребром, sр 3 -гибридизация, преобладают при 183-440 °С). Гигроскопичен, па воздухе «дымит». Образует кристаллогидрат, разлагающийся при нагревании. Хорошо растворим в воде (с сильным экзо-эффектом), полностью диссоциирует на ионы, создает в растворе сильнокислотную среду вследствие гидролиза. Реагирует со щелочами, гидратом аммиака. Восстанавливается при электролизе расплава. Вступает в реакции ионного обмена.

Качественная реакция на ион Аl 3+ — образование осадка АlРO 4 , который переводится в раствор концентрированной серной кислотой.

Применяется как сырье в производстве алюминия, катализатор в органическом синтезе и при крекинге нефти, переносчик хлора в органических реакциях. Уравнения важнейших реакций:

АlСl 3 . 6Н 2 O →АlСl(ОН) 2 (100-200°С, — HCl , H 2 O ) →Аl 2 O 3 (250-450°С, -HCl,H2O)

АlСl 3(т) + 2Н 2 O (влага) = АlСl(ОН) 2(т) + 2НСl (белый «дым»)

АlCl 3 + ЗNаОН (разб.) = Аl(OН) 3 (аморф.) ↓ + ЗNаСl

АlСl 3 + 4NаОН (конц.) = Nа[Аl(ОН) 4 ] + ЗNаСl

АlСl 3 + 3(NН 3 . Н 2 O) (конц.) = Аl(ОН) 3(аморф.) + ЗNН 4 Сl

АlCl 3 + 3(NН 3 Н 2 O) (конц.) =Аl(ОН)↓ + ЗNН 4 Сl + Н 2 O (100°С)

2Аl 3+ + 3Н 2 O + ЗСО 2- 3 = 2Аl(ОН) 3 ↓ + ЗСO 2 (80°С)

2Аl 3+ =6Н 2 O+ 3S 2- = 2Аl(ОН) 3 ↓+ 3Н 2 S

Аl 3+ + 2НРО 4 2- — АlРO 4 ↓ + Н 2 РO 4 —

2АlСl 3 →2Аl + 3Сl 2 (электролиз,800 °С ,в расплаве N аС l )

Получение АlСl в промышленност и — хлорирование каолина, глинозёма или боксита в присутствии кокса:

Аl 2 O 3 + 3С (кокс) + 3Сl 2 = 2АlСl 3 + 3СО (900 °С)

Хлорид железа( II ) F еС l 2 . Бескислородная соль. Белый (гидрат голубовато-зеленый), гигроскопичный. Плавится и кипит без разложения. При сильном нагревании летуч в потоке НСl. Связи Fе — Сl преимущественно ковалентные, пар состоит из мономеров FеСl 2 (линейное строение, sр-гибридизация) и димеров Fе 2 Сl 4 . Чувствителен к кислороду воздуха (темнеет). Хорошо растворим в воде (с сильным экзо-эффектом), полностью диссоциирует на ионы, слабо гидролизуется по катиону. При кипячении раствора разлагается. Реагирует с кислотами, щелочами, гидратом аммиака. Типичный восстановитель. Вступает в реакции ионного обмена и комплексообразования.

Применяется для синтеза FеСl и Fе 2 О 3 , как катализатор в органическом синтезе, компонент лекарственных средств против анемии.

Уравнения важнейших реакций:

FеСl 2 4Н 2 O = FеСl 2 + 4Н 2 O (220 °С, в атм. N 2 )

FеСl 2 (конц.) + Н 2 O=FеСl(ОН)↓ + НСl (кипячение)

FеСl 2(т) + Н 2 SO 4 (конц.) = FеSO 4 + 2НСl (кипячение)

FеСl 2(т) + 4HNO 3 (конц.) = Fе(NO 3) 3 + NO 2 + 2НСl + Н 2 O

FеСl 2 + 2NаОН (разб.) = Fе(ОН) 2 ↓+ 2NaСl (в атм. N 2 )

FеСl 2 + 2(NН 3 . Н 2 O) (конц.) = Fе(ОН) 2 ↓ + 2NН 4 Cl (80 °С)

FеСl 2 + Н 2 = 2НСl + Fе (особо чистое,выше 500 °С)

4FеСl 2 + O 2 (воздух) → 2Fе(Сl)O + 2FеСl 3 (t )

2FеСl 2(р) + Сl 2 (изб.) = 2FеСl 3(р)

5Fе 2+ + 8Н + + МnО — 4 = 5Fе 3+ + Мn 2+ + 4Н 2 O

6Fе 2+ + 14Н + + Сr 2 O 7 2- = 6Fе 3+ + 2Сr 3+ +7Н 2 O

Fе 2+ + S 2- (разб.) = FеS↓

2Fе 2+ + Н 2 O + 2СО 3 2- (разб.) = Fе 2 СO 3 (OН) 2 ↓+ СO 2

FеСl 2 →Fе↓ + Сl 2 (90°С, в разб. НСl, электролиз)

Получени е: взаимодействие Fе с соляной кислотой:

Fе + 2НСl = FеСl 2 + Н 2

промышленности используют хлороводород и ведут процесс при 500 °С).

Хлорид железа( III ) F еС l 3 . Бескислородная соль. Черно-коричневый (темно-красный в проходящем свете, зеленый в отраженном), гидрат темно-желтый. При плавлении переходит в красную жидкость. Весьма летуч, при сильном нагревании разлагается. Связи Fе — Сl преимущественно ковалентные. Пар состоит из мономеров FеСl 3 (треугольное строение, sр 2 -гибридизация, преобладают выше 750 °С) и димеров Fе 2 Сl 6 (точнее, Сl 2 FеСl 2 FеСl 2 , строение — два тетраэдра с общим ребром, sр 3 -гибридизация, преобладают при 316-750 °С). Кристаллогидрат FеСl . 6Н 2 O имеет строение Сl 2Н 2 O. Хорошо растворим в воде, раствор окрашен в желтый цвет; сильно гидролизован по катиону. Разлагается в горячей воде, реагирует со щелочами. Слабый окислитель и восстановитель.

Применяется как хлорагент, катализатор в органическом синтезе, протрава при крашении тканей, коагулянт при очистке питьевой воды, травитель медных пластин в гальванопластике, компонент кровоостанавливающих препаратов.

Уравнения важнейших реакций:

FеСl 3 6Н 2 O=Сl + 2Н 2 O (37 °С)

2(FеСl 8 6Н 2 O)=Fе 2 O 3 + 6НСl + 9Н 2 O (выше 250 °С)

FеСl 3 (10%) + 4Н 2 O = Сl — + + (желт.)

2FеСl3 (конц.) + 4Н 2 O = + (желт.) + — (бц.)

FеСl 3 (разб., конц.) + 2Н 2 O →FеСl(ОН) 2 ↓ + 2НСl (100 °С)

FеСl 3 + 3NaОН (разб.) = FеО(ОН)↓ + Н 2 O + 3NаСl (50 °С)

FеСl 3 + 3(NН 3 Н 2 O) (конц, гор.) =FeO(OH)↓+H 2 O+3NH 4 Cl

4FеСl 3 + 3O 2 (воздух) =2Fе 2 O 3 + 3Сl 2 (350-500 °С)

2FеСl 3(р) + Сu→ 2FеСl 2 + СuСl 2

Хлорид аммония N Н 4 Сl . Бескислородная соль, техническое название нашатырь. Белый, летучий, термически неустойчивый. Хорошо растворим в воде (с заметным эндо-эффектом, Q = -16 кДж), гидролизуется по катиону. Разлагается щелочами при кипячении раствора, переводит в раствор магний и гидроксид магния. Вступает в реакцию кон мутации с нитратами.

Качественная реакция на ион NН 4 + — выделение NН 3 при кипячении со щелочами или при нагревании с гашёной известью.

Применяется в неорганическом синтезе, в частности для создания слабокислотной среды, как компонент азотных удобрений, сухих гальванических элементов, при пайке медных и лужении стальных изделий.

Уравнения важнейших реакций:

NH 4 Cl (т) ⇌ NH 3(г) + HCl (г) (выше337,8 °С)

NН 4 Сl + NаОН (насыщ.) = NаСl + NН 3 + Н 2 O (100 °С)

2NН 4 Сl (Т) + Са(ОН) 2(т) = 2NН 3 + СаСl 2 + 2Н 2 O (200°С)

2NН 4 Сl (конц.) +Mg= Н 2 + МgСl 2 + 2NН 3 (80°С)

2NН 4 Сl (конц., гор.) + Мg(ОН) 2 = MgСl 2 + 2NН 3 + 2Н 2 O

NH + (насыщ.) + NO — 2 (насыщ.) =N 2 + 2Н 2 O (100°С)

NН 4 Сl + КNO 3 = N 2 O + 2Н 2 O + КСl (230-300 °С)

Получение : взаимодействие NH 3 с НСl в газовой фазе или NН 3 Н 2 О с НСl в растворе.

Гипохлорит кальция Са(С l О) 2 . Соль хлорноватистой кислоты НСlO. Белый, при нагревании разлагается без плавления. Хорошо растворим в холодной воде (образуется бесцветный раствор), гидролизуется по аниону. Реакционноспособный, полностью разлагается горячей водой, кислотами. Сильный окислитель. При стоянии раствор поглощает углекислый газ из воздуха. Является активной составной частью хлорной (белильной) извести — смеси неопределенного состава с СаСl 2 и Са(ОН) 2 . Уравнения важнейших реакций:

Са(СlO) 2 = СаСl 2 + O 2 (180 °С)

Са(СlO) 2(т) + 4НСl (конц.) = СаСl + 2Сl 2 + 2Н 2 O (80 °С)

Са(СlO) 2 + Н 2 O + СO 2 = СаСО 3 ↓ + 2НСlO (на холоду)

Са(СlO) 2 + 2Н 2 O 2 (разб.) = СаСl 2 + 2Н 2 O + 2O 2

Получение:

2Са(ОН) 2 (суспензия) + 2Сl 2(г) = Са(СlO) 2 + СаСl 2 + 2Н 2 O

Хлорат калия КС lO 3 . Соль хлорноватой кислоты НСlO 3 , наиболее известная соль кислородсодержащих кислот хлора. Техническое название — бертоллетова соль (по имени ее первооткрывателя К.-Л. Бертолле, 1786). Белый, плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворим в воде (образуется бесцветный раствор), гидролиза нет. Разлагается концентрированными кислотами. Сильный окислитель при сплавлении.

Применяется как компонент взрывчатых и пиротехнических смесей, головок спичек, в лаборатории — твердый источник кислорода.

Уравнения важнейших реакций:

4КСlO 3 = ЗКСlO 4 + КСl (400 °С)

2КСlO 3 = 2КСl + 3O 2 (150-300 °С, кат. Мп O 2 )

КСlO 3(Т) + 6НСl (конц.) = КСl + 3Сl 2 + ЗН 2 O (50-80 °С)

3КСlO 3(Т) + 2Н 2 SO 4 (конц., гор.) = 2СlO 2 + КСlO 4 + Н 2 O + 2КНSO 4

(диоксид хлора на свету взрывается: 2С lO 2(Г) = Сl 2 + 2 O 2 )

2КСlO 3 + Е 2(изб.) = 2КЕO 3 + Сl 2 (в разб. Н NO 3 , Е = В r , I )

KClO 3 +H 2 O→H 2 +KClO 4 (Электролиз)

Получение КСlO 3 в промышленности — электролиз горячего раствора КСl (продукт КСlO 3 выделяется на аноде):

КСl + 3Н 2 O →Н 2 + КСlO 3 (40-60 °С,Электролиз)

Бромид калия КВ r . Бескислородная соль. Белый, негигроскопичный, плавится без разложения. Хорошо растворим в воде, гидролиза нет. Восстановитель (более слабый, чем

Качественная реакция на ион Вr — вытеснение брома из раствора КВr хлором и экстракция брома в органический растворитель, например ССl 4 (в результате водный слой обесцвечивается, органический слой окрашивается в бурый цвет).

Применяется как компонент травителей при гравировке по металлам, составная часть фотоэмульсий, лекарственное средство.

Уравнения важнейших реакций:

2КВr (т) + 2Н 2 SO 4 (КОНЦ., гор,) + МnO 2(т) =Вr 2 + МnSO 4 + 2Н 2 O + К 2 SO 4

5Вr — + 6Н + + ВrО 3 — = 3Вr 2 + 3Н 2 O

Вr — + Аg + =АgВr↓

2КВr (р) +Сl 2(Г) =2КСl + Вг 2(р)

КВr + 3Н 2 O→3Н 2 + КВrО 3 (60-80 °С, электролиз)

Получение:

К 2 СO 3 + 2НВr = 2КВ r + СO 2 + Н 2 O

Иодид калия К I . Бескислородная соль. Белый, негигроскопичный. При хранении на свету желтеет. Хорошо растворим в воде, гидролиза нет. Типичный восстановитель. Водный раствор КI хорошо растворяет I 2 за счет комплексообразования.

Качественная реакция на ион I — вытеснение иода из раствора КI недостатком хлора и экстракция иода в органический растворитель, например ССl 4 (в результате водный слой обесцвечивается, органический слой окрашивается в фиолетовый цвет).

Уравнения важнейших реакций:

10I — + 16Н + + 2МnO 4 — = 5I 2 ↓ + 2Мn 2+ + 8Н 2 O

6I — + 14Н + + Сr 2 O 7 2- =3I 2 ↓ + 2Сr 3+ + 7Н 2 O

2I — + 2Н + + Н 2 O 2 (3%) = I 2 ↓+ 2Н 2 O

2I — + 4Н + + 2NO 2 — = I 2 ↓ + 2NO + 2Н 2 O

5I — + 6Н + + IO 3 — = 3I 2 + 3Н 2 O

I — + Аg + = АgI (желт .)

2КI (р) + Сl 2(р) (нед.) =2КСl + I 2 ↓

КI + 3Н 2 O + 3Сl 2(р) (изб.) = КIO 3 + 6НСl (80°С)

КI (Р) + I 2(т) =K) (Р) (кор.) («йодная вода»)

КI + 3Н 2 O→ 3Н 2 + КIO 3 (электролиз,50-60 °С)

Получение:

К 2 СO 3 + 2НI = 2 К I + СO 2 + Н 2 O

МИНИСТЕРСТВО ВЫСШЕГО ОБРАЗОВАНИЯ РФ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ТЭП

РЕФЕРАТ

по ОЭХТ на тему:

Электросинтез хлорной кислоты”

Принял: Андреев И. Н.

Выполнила студентка гр. 67-31 Кушмна Г.Ш.

Казань – 2002

1. Первоначальное получение хлорной кислоты.

2. Области применения.

3. Свойства хлорной кислоты.

4. Производство хлорной кислоты.Реакции на электродах и условия электролиза.

5. Технологическая схема производства хлорной кислоты.

6. Конструкции электролизеров.

7. ПД – портрет ЭХО.

8. Список использованной литературы.

1. ПЕРВОНАЧАЛЬНОЕ ПОЛУЧЕНИЕ ХЛОРНОЙ КИСЛОТЫ.

Первое сообщение о синтезе хлорной кислоты содержится в статье Стадиона, который в 1816 г. получил её путем перегонки продукта, образующегося при осторожном плавлении хлората калия в смеси с концентрированной серной кислотой. Стадион внес важный вклад в исследование хлорной кислоты не только как первооткрыватель, но и как исследователь, впервые получивший её электролизом раствора двуокиси хлора.

Хлорная кислота была получена в 1835 г. Берцелиусом при электролизе соляной кислоты, а позже – при электролизе водного раствора двуокиси хлора и взаимодействием перхлората калия с серной кислотой.

В первой половине XIX в. были выделены и изучены перхлораты многих металлов. Электрохимическое производство этих солей было запатентовано Карльсоном в 1890 г.

Первое промышленное производство перхлоратов было создано в Швеции в 1893 г. по электрохимическому методу. В начале XX в. было организовано промышленное производство перхлоратов во Франции, Швейцарии, США и Германии, однако масштаб производства был невелик и мировая выработка перхлоратов до первой мировой войны не превышала 2000-3000 т/год

Во время первой мировой войны производство перхлоратов получило интенсивное развитие в связи с применением этих солей для производства взрывчатых веществ. Мировое производство перхлоратов возросло до 50 тыс. т в год. После окончания войны производство перхлоратов резко сократилось и получило новое развитие только в годы второй мировой войны.

2.ОБЛАСТИ ПРИМЕНЕНИЯ.

Области применения хлорной кислоты и ее солей довольно разнообразны. Хлорная кислота используется для получения различных перхлоратов, для разрушения органических веществ, как добавка в электролит в гальванотехнике, применяется в качестве реагента в аналитической химии, при электрополировании металлов, как катализатор в процессах гидролиза и этерификации.

Помимо перечисленных выше основных потребителей, хлорная кислота и ее соли применяются в небольших количествах в самых разнообразных отраслях народного хозяйства: они широко используются в аналитической химии (например, при количественном определении калия в виде малорастворимого перхлората калия), в фотографии в качестве сенсибилизирующих добавок, как сильные осушающие средства и для других целей. Хлорная кислота как сильный окислитель используется для окисления и разрушения органических веществ (влажное сожжение), для окисления руд; ее применяют также в качестве растворителя, среды для неводного титрования, для разрушения протеинов при биологических анализах, как добавка к электролиту в гальванотехнике и при электролитической обработке металлов.

В последние годы интенсивно развивается и техника производства перхлоратов и хлорной кислоты. Стали широко применяться новые электродные материалы и электроды, совершенствуется технология на всех стадиях процесса.В настоящее время производство хлорной кислоты и перхлоратов организовано практически только по электрохимическому методу.

3.СВОЙСТВА ХЛОРНОЙ КИСЛОТЫ.

Хлорная кислота -НСLO 4 -одна из наиболее сильных неорганических кислот. Безводная хлорная кислота представляет собой бесцветную подвижную жидкость плотностью 1768 кг/м 3 при 20 °С, сильно дымящую во влажной атмосфере. Вязкость хлорной кислоты при 20 °С равна 0,795 10 -3 Па- °С, т. е. меньше вязкости воды.

Безводная хлорная кислота плавится при температуре около -102 °С, кипит с разложением при 110°С. Теплота ее образования из элементов 36,1 кДж/моль, плавления 6,93, испарения 43,6 кДж/моль и теплота разбавления в 800 частях воды 88,5 кДж/моль.

С водой хлорная кислота образует ряд гидратов:

Т пл., 0 С Т пл., 0 С

HCLO 4 0.25H 2 O - 73.1 HCLO 4 3H 2 O -40.2
HCLO 4 H 2 O 49.905 HCLO 4 3.5H 2 O -45.6
HCLO 4 2H 2 O -20.65 HCLO 4 4H 2 O -57.8
HCLO 4 2.5H 2 O -32.1

Диаграмма плавкости системы вода-хлорная кислота приведена на рис. 1

В табл. 1 приведена плотность водных растворов хлорной кислоты при различной температуре.

Водные растворы хлорной кислоты обладают хорошей электропроводимостью и используются как электролиты для проведения некоторых электрохимических процессов, в частности, для получения хлорной кислоты.

В табл. 2 приведено удельное электрическое сопротивление водных растворов хлорной кислоты при различной температуре.

Температура кипения растворов хлорной кислоты различной концентрации при давлении 2,4 кПа составляет:

Безводная хлорная кислота весьма реакционно-способна, при соприкосновении со многими легкоокисляющимися органическими веществами она взрывается. Безводная хлорная кислота - сильный окислитель. Элементарный фосфор и сера окисляются хлорной кислотой до фосфорной и серной кислоты. Иод окисляется хлорной кислотой; бром, хлор, а также НВг и НСL не взаимодействуют с нею даже при нагревании.

Таблица 1. Плотность водных растворов хлорной кислоты в интервале от -25 до 75 °С (в г/см 3)

Концентрация, % Температура, °С
- 25 0 15 20 30 50 70
10 - 1,0637 1,0597 1,0579 1,0539 1,0437 1,023
20 - 1,1356 1,1279 1,1252 1,2000 1,1075 1,096
30 1,2312 1,2168 1,2067 1,2033 1,1965 1,1821 1,160
40 1,3308 1,3111 1,2991 1,2947 1,2866 1,2703 1,251
50 1,4528 1,4255 1,4103 1,4049 1,3944 1,3752 1,350
60 1,5908 1,5580 1,5386 1,5327 1,5218 1,4994 1,470
70 1,7306 1,6987 1,6736 - - 1,6344 1,617
80 - - - - - 1,7540 1,727
90 - - - - - 1,7720 1,738
95 - - - 1,8043 - 1,7515 1,704
100 - 1,8077 - 1,7676 -- 1,7098 -

Таблица 2. Удельное электрическое сопротивление водных растворов хлорной кислоты (в Ом-м-10 2)

Температура, °С Концентрация НClO 4 масс. %
10 20 30 40 50 60 70
50 2,207 1.272 1,028 1,001 1,154 1,540 2,401
40 2,428 1.397 1.132 1.106 1.286 1,725 2,704
30 2.715 1,562 1,262 1,240 1,452 1,961 3,084
20 3,100 1776 1.436 1,414 1,670 2,275 3,575
10 3,628 2,072 1,665 1.647 1.964 2,705 4,227
0 4,420 2.488 1,992 1.968 2.376 3,320 5,129
-10 - 3.102 2.464 2.436 2.982 4,242 6,418
-20 - - 3,176 3.133 3.919 5,742 -
-30 - - - 4,250 5.505 8,402 11,59
-40 - - - 6.21 844 13.82 -
-50 - - - 10,41 - 27,10 -

Хлорная кислота при хранении при комнатной температуре медленно разлагается, что обнаруживается по потемнению жидкости вследствие окрашивания ее продуктами разложения. Такая кислота опасна при хранении, так как может самопроизвольно взрываться. Поэтому обычно безводную хлорную кислоту не хранят, а стараются готовить непосредственно перед ее использованием.

Стабильность хлорной кислоты может быть повышена добавками ингибиторов. В качестве ингибиторов могут служить, в частности, органические соединения, содержащие трихлорметильную группу. Наиболее эффективными ингибиторами являются трихлоруксусная кислота и тетрахлорид углерода.

Рис. 1. Диаграмма плавкости системы НСLO 4 -Н 2 O.

Все работы, связанные с использованием хлорной кислоты и ее солей, требуют большой осторожности. При наличии примесей в хлорной кислоте возможен самопроизвольный распад кислоты со взрывом.

Попадание хлорной кислоты на кожные покровы приводит к болезненным химическим ожогам.

Хранить и перевозить хлорную кислоту разрешается только в виде водного раствора с концентрацией не более 70% НСLO 4 . В случае необходимости применения безводной или концентри­рованной хлорной кислоты, последнюю готовят непосредственно перед использованием. Срок хранения концентрированной кис­лоты крайне ограничен, особенно при потемнении жидкости из-за окрашивания ее продуктами разложения.

4.ПРОИЗВОДСТВО ХЛОРНОЙ КИСЛОТЫ.РЕАКЦИИ НА ЭЛЕКТРОДАХ И УСЛОВИЯ ЭЛЕКТРОЛИЗА.

При электролизе водных растворов соляной кислоты на аноде возможно выделение элементарного хлора или кислорода, а на электродах с высоким анодным потенциалом - также образование высших кислородных соединений хлора - хлорной кислоты. В зависимости от условий проведения процесса и прежде всего от концентрации ионов С1 - , температуры и применяемого анодного материала, скорости этих трех процессов могут очень сильно изменяться.

При электролизе концентрированной соляной кислоты на анодах всех видов, стойких в этих условиях, происходит выделение элементарного хлора с выходом по току, близким к 100%. По мере снижения концентрации соляной кислоты выход хлора по току уменьшается за счет увеличения скорости выделения кислорода на аноде, а при применении графитовых анодов и за счет окисления графита. Образование хлорной кислоты наблюдается только в сильно разбавленных растворах НС1. При электролизе 1 н. раствора на платиновых анодах соляная кислота расходуется практически нацело на получение хлора, а образование хлорной кислоты идет в очень малой степени. При снижении концентрации соляной кислоты до 0,1 н. примерно 50% НС1 расходуется на образование хлорной кислоты и 50% - на получение газообразного хлора.

Окисление ионов хлора до хлорной кислоты протекает при высоком положительном потенциале 2,8-3,0 В. На графитовом аноде в водных растворах хлоридов невозможно достичь такого потенциала, поэтому на этих анодах образование хлорной кислоты не наблюдается даже в сильно разбавленных растворах.

УСЛОВИЯ ЭЛЕКТРОЛИЗА.

Процесс электрохимического синтеза хлорной кислоты на аноде описывается следующим суммарным уравнением:

НСL + 4Н 2 О – 8e - -- НСLO 4 + 8H + (1)

На катоде происходит выделение водорода.

В процессе электролиза растворов хлороводородной кислоты на аноде возможно образование хлора, кислорода и хлорной кислоты. В зависимости от условий проведения электролиза, таких как концентрация ионов хлорида, температура и применяемый анодный материал, скорость образования этих трех веществ в значительной степени может изменяться. Образование хлорной кислоты наблюдается только в разбавленных растворах хлороводородной кислоты.

Для получения хлорной кислоты необходимо применять аноды, на которых можно добиться высокого перенапряжения для процессов, конкурирующих с окислением хлор-иона до иона С10 4 - т.е. для процессов выделения хлора и кислорода. В рассматриваемом случае это достигается на платиновых или платино-титановых анодах при низкой концентрации хлор-ионов и низкой температуре электролиза. При этом, естественно, получают хлорную кислоту низкой концентрации. Из-за малой электропроводности электролита напряжение на ячейке и расход электроэнергии велики.

При электролизе 0,5 н. раствора соляной кислоты получена хлорная кислота концентрацией до 20 г/л. При невысокой плотности тока и температуре 18 °С напряжение на ячейке составляло 8 В, а расход электроэнергии около 47кВт.ч/кг 100%-ной хлорной кислоты. Недостатки такого способа заключаются в большом расходе электроэнергии и низкой концентрации получаемой хлорной кислоты.

Для снижения удельного электрического сопротивления электролита и соответственно потерь напряжения в электролите электролизу подвергают разбавленные растворы соляной кислоты в растворах сильных электролитов. Наиболее удобно вести процесс окисления иона С1 - до СLO 4 - в растворах хлористого водорода или хлора в концентрированной 4-6 н. хлорной кислоте. При этом возможна организация непрерывной подачи хлористого водорода, соляной кислоты или хлора в электролит и отвода части электролита в виде концентрированной хлорной кислоты для окончательной переработки ее в готовую продукцию.

Протекание процесса электролиза зависит от потенциала анода, концентрации хлорной и соляной кислот в электролите, температуры электролиза и плотности тока.

При изменении концентрации НС1 в электролите при прочих равных условиях изменяется как плотность суммарного тока, так и плотность парциальных токов, расходуемых на образование СLO 4 - и другие процессы, протекающие одновременно на аноде. На рис. 2 показана зависимость плотности общего и парциальных токов получения СLO 4 - и СL 2 от концентрации соляной кислоты в электролите при проведении электролиза при температуре -20 °С. С повышением температуры электролиза резкое увеличение плотности тока выделенияСL 2 и снижение плотности тока образования СLO 4 - наступает при более низкой концентрации НС1 в электролите.

Концентрация НСL,кмоль/м 3 Концентрация НСL,кмоль/м 3

С изменением концентрации НС1 в электролите меняется соотношение парциальных токов, расходуемых на образование СLO 4 - и выделение СL 2 и O 2 . На рис. 3 приведена зависимость выхода по току продуктов электролиза от концентрации соляной кислоты в электролите. Данные получены при 20 °С в 4 н. НСLO 4 на платиновых анодах с потенциалом 2,8 В

Наиболее высокие значения выходов хлорной кислоты по току получены для соляной кислоты концентрацией 0,8-2 н. При снижении концентрации соляной кислоты ниже 0,8 н. выход НСLO 4 по току уменьшается за счет увеличения выхода кислорода по току. При повышении концентрации НС1 более 2 н. возрастает расход тока на выделение хлора, и выход по току хлорной кислоты также резко снижается. Оптимальная концентрация соляной кислоты в электролите увеличивается при снижении температуры электролиза и зависит от концентрации хлорной кислоты в электролите.

Процесс анодного окисления соляной кислоты в хлорную сильно зависит от температуры. На рис. 4 приведена зависимость выхода по току продуктов электролиза от температуры раствора при содержании в электролите 4 н. НСLO 4 и 1 н. НС1 и значении потенциала анода 2,8-3,0 В. С понижением температуры выход хлорной кислоты по току возрастает, а хлора и кислорода соответственно снижается.

Содержание примесей в хлорной кислоте зависит от чистоты исходной соляной кислоты и применения достаточно стойких к коррозии конструкционных материалов для изготовления электролизеров, трубопроводов и аппаратуры. В отбираемой из электролизера хлорной кислоте содержится значительное количество ионов хлора. Для получения товарной кислоты необходима ее очистка от ионов хлора, которую осуществляют электрохимическим способом, т.е. возможно более полным окислением ионов хлора до хлорной кислоты. Однако при этом по мере снижения концентрации ионов хлора выход хлорной кислоты по току снижается и приближается к нулю при достаточно полной очистке раствора от примесей соляной кислоты. С увеличением степени очистки хлорной кислоты от ионов хлора снижается общий выход по току, возрастают расход электрической энергии и скорость коррозии платиновых анодов.


При очень высоких требованиях к чистоте хлорной кислоты последнюю можно дополнительно очищать от примесей НС1 отгонкой или отдувкой соляной кислоты инертным газом. Для очистки хлорной кислоты, получаемой из электролизеров продукционной стадии, от соляной кислоты можно применять также ректификацию. При этом отпадают трудности, связанные с электрохимической очисткой, и достигается более высокий суммарный выход хлорной кислоты по току. Хлористый водород, отгоняемый из хлорной кислоты при ректификации, можно вновь возвратить на стадию продукционного электролиза.

Хлорную кислоту можно получать также анодным окислением хлора, растворенного в электролите - в 4-6 н. растворе хлорной кислоты. При электролизе таких растворов на платиновых анодах и серебряных катодах электролизеры, рассчитанные на нагрузку 3,5 кА при плотности тока 2 кА/м 2 и температуре О °С, работали при напряжении 4 В. Процесс описывается суммарным выражением

СL 2 + 8Н 2 0 - 2 НСLO 4 + 7 Н 2 (2)

По этому методу может быть получена очень чистая кислота, поскольку со стороны не вводятся никакие загрязняющие примеси. Часть электролита отбирают и после перегонки получают 60-70%-ную товарную кислоту.

Для электрохимического получения хлорной кислоты применяют электролизеры с платиновыми или платино-титановыми анодами. Вследствие очень высокой коррозионной активности смесей хлорной и соляной кислоты в качестве катода часто применяют графит. Графитовые катоды легко выдерживают остановки, связанные со снятием катодной поляризации. Известно, что при анодной поляризации платины в не сильно разбавленных растворах соляной кислоты при потенциалах отрицательнее 1,1-1,2 В (против н. в. э) происходит анодное растворение платины с выходом по току, близким к 100%. В этих условиях скорость растворения платины увеличивается с ростом потенциала, кислотности раствора и температуры. При потенциале платины (в анодную сторону) выше 1,1-1,2В наблюдается пассивация платины и при потенциале 1,3В в 1 н. НС1 скорость растворения платины снижается до 4 10 -5 A/м 2

Пассивация поверхности платинового анода, наблюдаемая в процессе электрохимического получения хлорной кислоты, связана с образованием на поверхности слоев адсорбированного кислорода и фазовых оксидов различного состава. Структура оксидных слоев на поверхности платины и ее коррозионная стойкость зависят от соотношения концентраций НС10 4 ,и НС1 в электролите. В процессе электролиза соляной кислоты с целью получения хлора и водорода добавление к электролиту 50-150 г/л хлорной кислоты снижает скорость анодного растворения платины. При электролизе чистых растворов НС10 4 кислород связан с поверхностью платины более прочно, чем при электролизе смесей НС10 4 и НС1

На рис. 5 приведена зависимость плотности общего тока поляризации на платиновом аноде и плотности тока растворения платины от потенциала анода при электролизе 3 н. НС10 4 при различных температурах.

С увеличением содержания НС1 в электролите количество фазовых оксидов на поверхности анода уменьшается. В процессе электролиза смесей НС10 4 и НС1 при высоких анодных потенциалах и постоянной суммарной кислотности увеличение содержания НС1 в электролите или растворение элементарного хлора приводит к повышению коррозионной стойкости платинового анода. Как при комнатной, так и при пониженной температуре, увеличение содержания НС1 в электролите или насыщение его элементарным хлором приводит к снижению плотности тока растворения платины. Результаты исследований, проведенных при температурах -15 и -25 °С и потенциале 2,8В (н.в.э.), приведены на рис. 6.

На рис. 7 приведена зависимость доли тока, расходуемого на растворение платины, от концентрации НС1 в электролите или от насыщения электролита хлором для тех же условий электролиза.

При увеличении концентрации НС1 плотность тока растворения платины и доля тока, расходуемого на ее растворение, снижаются, особенно сильно при введении первых порций НС1 в электролит. Поэтому при выборе условий электрохимического производства хлорной кислоты целесообразно применять верхний предел концентрации НС1, при котором еще не наблюдается существенного снижения выхода хлорной кислоты по току. С понижением температуры электролиза, эта наиболее целесообразная концентрация НС1 в электролите возрастает.

Насыщение электролита элементарным хлором снижает плотность тока растворения платины, но мало влияет на долю тока, расходуемого на растворение, так как практически в равной мере снижаются скорости основных анодных процессов и общая плотность поляризующего тока.

Ранее для изготовления анодов применяли платиновые проволоки или фольгу. В настоящее время используются платино-титановые аноды, в которыхплатина в виде тонкой фольги приваривается к титановой основе электрода При длительном электролизе происходит постепенное разрушение платино-титановых анодов, как за счет растворения платины на работающей поверхности анода, так и вследствие нарушения контакта между платиновой фольгой и титановой основой. При этом платина, перешедшая в раствор, частично осаждается на графитовых катодах; остальная ее часть выводится из электролизера с потоком хлорной кислоты. Платина осаждается в поверхностном слое графитового катода толщиной не более 100 мкм.

При включении нового электролизера со свежими графитовыми катодами содержание платины в хлорной кислоте, отбираемой из электролизера, составляет 0,3-0,5 мг/л, но по мере отложения платины на поверхности графитового катода условия осаждения ее на катоде изменяются. Скорость осаждения платины на катоде снижается. Это приводит к уменьшению осаждения платины из



раствора на катоде к постепенному возрастанию содержания платины в растворе, вытекающем из электролизера, до 2-2,5 мг/л.Стационарная концентрация платины в электролите зависит также от его состава и несколько возрастает с увеличением концентрации НС10 4 в интервале от 300 до 600 г/л и концентрации НС1 в интервале от 0 до 30 г/л.


На рис. 7 и 8 показано изменение количества платины в катодном пространстве, отделенном малопроточной диафрагмой от анодного пространства, через 5-7 ч электролиза при начальном содержании ее в катодной жидкости 6,8 мг/л. Повышение содержания НС1 и НС10 4 в электролите в исследованных пределах приводит к снижению скорости осаждения платины на графите и увеличению остаточного содержания ее в жидкости в 1,3-1,5 раза.Платина, осажденная на катоде, может быть собрана и возвращена на регенерацию; платина, уносимая из электролизера с по­током хлорной кислоты, теряется безвозвратно.

При определенных условиях процесса наиболее уязвимым в платино-титановых электродах является место приварки платиновой фольги к титановой основе электрода. В этом месте образуются сплавы платины с титаном переменного состава, которые отличаются меньшей коррозионной стойкостью, чем платина.

В качестве основы анода может быть использован также тантал. При испытаниях платино-танталовых анодов, полученных нанесением платины на танталовую основу электрода электроискровым способом, при потенциалах 3,0-3,1 В и комнатной температуре полученные электрохимические показатели аналогичны показателям на платино-титановых анодах. При температуре -20 °С выход хлорной кислоты и хлора по току несколько ниже, а кислорода выше, чем на платино-титановом аноде. Это, по-видимому, можно объяснить образованием платино-танталовых сплавов на поверхности анода при нанесении платины электроискровым способом

Для получения хлорной кислоты в качестве анода могут быть использованы и другие металлы платиновой группы. Электролиз смешанных растворов НС10 4 и НС1 (содержание НС1 1 н.) предложено проводить на иридиевом аноде в интервале (-5)-(-30) °С при анодном потенциале 2,9-3,3 В, а также на родиевом аноде. Однако в промышленных условиях обычно применяются пла-тино-титановые аноды.

5.ТЕХНОЛОГИЧЕСКАЯ СХЕМА ПРОИЗВОДСТВА.

Технологическая схема производства хлорной кислоты включает следующие основные стадии: приготовление электролита, электролиз, вакуумная дистилляция и получение безводной кислоты.

Содержание примесей в хлорной кислоте зависит от чистоты исходной хлороводородной кислоты, а также от типа конструкционных материалов электролизеров, трубопроводов и вспомогательной аппаратуры. С целью уменьшения содержания ионов хлорида в получаемой хлорной кислоте обычно используют каскад электролизеров, в котором осуществляется более полное окисление хлорид-ионов до НСLO 4 .

При получении хлорной кислоты путем анодного окисления хлора удается обеспечить очень высокое качество НСLO 4 , так как с хлором в электролит не вводится никаких примесей.

На стадии приготовления электролита часть хлорной кислоты, полученной в результате электролиза, из сборника насосом перекачивают в холодильник, в котором с помощью охлаждающего рассола понижают ее температуру до -5 "С. После охлаждения хлорную кислоту направляют в абсорбер, в который также подают хлор. В абсорбере осуществляют насыщение раствора хлорной кислоты хлором. Раствор, содержащий 40% (масс.) НСLO 4 и около 3 кг/м 3 растворенного хлора, с температурой О °С выводят из абсорбера и подают на электролиз. Из электролизера через промежуточный сборник выводят раствор хлорной кислоты, содержащей незначительное количество хлора и хлористого водорода, и направляют на вакуумную дистилляцию. В процессе дистилляции при давлении 2,66-3,23 кПа отгоняются пары воды, хлор и хлорид водорода. Отогнанные пары конденсируют в холодильнике и возвращают в сборник на стадию приготовления электролита.

Полученную хлорную кислоту с температурой около 90 °С направляют в холодильник и далее через вакуумный приемник в виде 60-70%-го раствора подают в сборник готового продукта.

При получении безводной хлорной кислоты используют процесс обезвоживания раствора хлорной кислоты олеумом с вакуумной отгонкой НСLO 4 в обогреваемом аппарате из кварцевого песка.

6. КОНСТРУКЦИИ ЭЛЕКТРОЛИЗЕРОВ.

В литературе имеется мало публикаций о конструкциях современных электролизеров

Известно, что используются в основном монополярные ящичные электролизеры с платино-титановыми анодами и графитовыми катодами. При применении электролизеров без диафрагмы выделяющийся на катоде водород загрязняется хлором и кислородом в количествах, превышающих взрывобезопасные пределы. В этом случае газы в электролизере следует разбавлять инертными газами.

При использовании электролизеров с диафрагмой их конструкция усложняется, а напряжение на электролизере возрастает. Однако вследствие разделения анодного и катодного пространств получаемые водород и хлор достаточно чистые и могут быть использованы; облегчаются создание безопасных условий работы и защита окружающей среды от вредных газовых выбросов.

Рис. 8 Хлоратный электролизер Ангела:

1 - графитовые аноды; 2 - катоды; 3 - катодная рама;

4 - корпус электролизера; 5 - крышка.

Сообщается о применении для получения хлорной кислоты электролизеров фильтр-прессного типа с биполярным включением электродов. Рамы электролизера, изготовленные из поливинилхлорида, снабжены диафрагмой из сетки, выполненной из полимерных материалов. Аноды покрыты платиновой фольгой, катоды - серебряные. Электролизер на нагрузку 5 кА работал при плотности тока 2,5 кА/м и напряжении на ячейке 4,4 В; выход по току составил около 60%.

Предложено также получать хлорную кислоту анодным окислением водных растворов хлоратов в трехкамерном электролизере (рис. 9)с двумя ионообменными мембранами. При применении платиновых или платино-титановых анодов в анодном пространстве можно получить достаточно чистую 2 н. кислоту, а в катодном пространстве - раствор щелочи. При этом в качестве катода можно использовать обычную сталь.

Хотя хлорная кислота, полученная электрохимическим окислением растворов НС1 или С1 2 в НС10 4 , используется для производства различных перхлоратов, часто с успехом применяется также и обратный процесс - получение хлорной кислоты из перхлоратов щелочных или щелочноземельных металлов. В этом случае исходным сырьем обычно служит перхлорат натрия, получаемый электрохимическим окислением хлората натрия. Иногда перхлорат



натрия переводят в перхлораты калия, бария или других металлов обменным разложением.

Рис.8. Трехкамерный электролизер:

/ - анодная камера; 2 - пористая диафрагма, 3 - центральная камера; 4 - катионообменная мембрана; 5 - катодная камера; 6 - катод;анод; 8, 9 - соответственно катодная и анодная шины.

Один из первых промышленных методов получения хлорной кислоты был основан на реакции между перхлоратом калия и серной кислотой

КС1O 4 + H 2 S0 4 = НС10 4 + KHS0 4 (3)

Хлорную кислоту отгоняли дистилляцией в вакууме. При этом в случае применения достаточно концентрированной серной кислоты получали хлорную кислоту высокой концентрации, близкую к безводной. Реализация этого процесса в промышленности связана со сложностью аппаратурного оформления, ограниченностью материалов, пригодных для работы в среде хлорной и серной кислот, и необходимостью проведения отгонки хлорной кислоты в вакууме. Поэтому применение процесса целесообразно только для получения безводной хлорной кислоты. Для получения водных растворов хлорной кислоты предложено взаимодействие перхлората калия с кремнефтористоводородной кислотой в водном растворе

КС10 4 + HsiF 6 = НС10 4 + KsiF 6 (4)

При этом помимо растворов хлорной кислоты получают осадок плохо растворимого кремнефторида калия. После фильтрования осадка разбавленные растворы хлорной кислоты можно подвергать концентрированию и затем возгонке в виде азеотропной кислоты концентрацией около 72%. Однако получаемые осадки кремнефторида калия плохо фильтруются, что затрудняет практическое использование этого метода.

Для получения безводной хлорной кислоты, помимо указанного взаимодействия солей хлорной кислоты с сильными неорганическими кислотами, применяют перегонку в вакууме смеси технической, примерно 70%-ной хлорной кислоты с трех-четырехкратным по объему количеством дымящейся серной кислоты.

Предложен непрерывный процесс получения безводной хлорной кислоты обезвоживанием азеотропа олеумом с вакуумной отгонкой. Схема такой установки показана на рис. 10. На рисунке изображена лабораторная установка, однако по такому же принципу может быть создана и более крупная установка. В самом аппарате всегда находится небольшое количество подвергаемой обработке смеси кислот, что уменьшает опасность, связанную с возможными взрывами. При смешении кислот требуется охлаждение смесителя во избежание перегрева и возможного термического разложения хлорной кислоты.


Рис. 10. Схема установки для получения безводной хлорной кислоты:

1 - труба из кварцевого стекла или пирекса;

2 - электрообогрев; з - капельная воронка;

4 - приемник отработанной смеси кислот;

5 - трубка для отвода паров хлорной кислоты;

6 - приемник-конденсатор безводной хлорной кислоты.

7. ПД – ПОРТРЕТ ЭХО .

1998 год 9Л248П Пат. 2086706 Россия, МКИ 6 с 25В1/22, 1/26. Алиев З.М. Дагестан. университет им. Ленина №94018915/25 Заявл 25.5.94. Опубл. 10.8.97 Бюл №22

Способ получения хлорной кислоты путем электрохимического окисления CL 2 на платиновом аноде в растворе 0.1 М HCL и 4М хлорной кислоты при температуре 0 0 и анодной плотности тока 0.4-0.7 А/см 2 отличается тем, что процесс ведут в без диафрагменном электролизере с графитовым катодом с последовательным насыщением раствора CL 2 под давлением 0.3-0.6МПа и О 2 под давлением 4-5МПа при катодной плотности тока 8-10мА-см 2 .

1998год 15Л215П. Система электролизеров фильтр-прессного типа.Elektrolyserellenanordnung in Filterpressenbauart: Заявка 4325705. Германия, МКИ 6 с 25 В13/001. Kreuter Walter, Linde AG.№ 4325705.4; Заявл. 30.7.93; Опубл.2.2.95.

Предложена система электролизеров фильтр – прессного типа, состоящая из большого числа последовательно соединенных электролизеров с анодным и катодным пространствами, разделенными диафрагмами. Электролизеры отделены друг от друга непроницаемыми перегородками из листового материала, образующими биполярные Э. Данные перегородки изготовленные из Ni, образуют также жесткую конструкцию с перфорированными и волнистыми перегордками, изготовленными из этого же металла. Конструкция данной системы электролизеров отличается прочностью. Приведена и описана схема системы Ф. Л. Чернович.

8. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.

1.Л. М. Якименко, Г. А. Серышев. “Электрохимический синтез неорганических.” М. “Химия” 1984 г.

2. Л. М. Якименко, “Справочник по производству хлора, каустической соды и основных хлорпродуктов.” М. “Химия” ,1974 г.

3. Л. М. Якименко, М.И.Пасманик. “Справочник по производству хлора, каустической соды и основных хлорпродуктов.” Изд. 2-е, пер. и доп. М.,. “Химия” 1976 г.

4. “Справочник по электрохимии” Под ред. А. М. Сухотина.-Л.: Химия, 1981 г.

5. М. Я. Фиошин, В. В. Павлов. “Электролиз в неорганической химии.” М. 1976 г

Хлорная кислота H C l O 4 {\displaystyle {{HClO}_{4}}} - одноосновная кислота, одна из самых сильных (в водном растворе, pK = ~ -10), безводная - исключительно сильный окислитель , так как содержит хлор в высшей степени окисления +7.

Энциклопедичный YouTube

    1 / 1

    ✪ СИНТЕЗ СИНИЛЬНОЙ КИСЛОТЫ

Субтитры

Свойства

Физические свойства

Бесцветная летучая жидкость, сильно дымящая на воздухе, в парах мономерна. Безводная хлорная кислота очень реакционноспособна и неустойчива. Жидкая HClO 4 частично димеризована, для неё характерна равновесная автодегидратация:

3 H C l O 4 ⇄ H 3 O + + C l O 4 − + C l 2 O 7 {\displaystyle {\mathsf {3HClO_{4}\rightleftarrows H_{3}O^{+}+ClO_{4}^{-}+Cl_{2}O_{7}}}}

Химические свойства

Взрывоопасна . Хлорную кислоту и её соли (перхлораты) применяют как окислители. Хлорная кислота, как одна из самых сильных кислот, растворяет золото и платиновые металлы, а в реакции с серебром образует хлорноватую кислоту :

3 H C l O 4 + 2 A g = 2 A g C l O 4 + H C l O 3 + H 2 O {\displaystyle {\mathsf {3HClO_{4}+2Ag=2AgClO_{4}+HClO_{3}+H_{2}O}}}

8 A s + 5 H C l O 4 + 12 H 2 O = 8 H 3 A s O 4 + 5 H C l {\displaystyle {\mathsf {8As+5HClO_{4}+12H_{2}O=8H_{3}AsO_{4}+5HCl}}} (данная реакция используется в металлургии для очистки руд)

Перхлорат йода в лаборатории получают при обработке раствора йода в безводной хлорной кислоте озоном :

I 2 + 6 H C l O 4 + O 3 = 2 I (C l O 4) 3 + 3 H 2 O {\displaystyle {\mathsf {I_{2}+6HClO_{4}+O_{3}=2I(ClO_{4})_{3}+3H_{2}O}}}

Являясь крайне сильной неустойчивой кислотой, хлорная кислота разлагается:

4 H C l O 4 = 4 C l O 2 + 3 O 2 + 2 H 2 O {\displaystyle {\mathsf {4HClO_{4}=4ClO_{2}+3O_{2}+2H_{2}O}}}

Хлорная кислота хорошо растворима во фтор- и хлорорганических растворителях, таких, как CF 3 {\displaystyle {{\mbox{CF}}_{3}}} C O O H {\displaystyle COOH} , CHCl 3 {\displaystyle {{\mbox{CHCl}}_{3}}} , CH 2 Cl 2 {\displaystyle {{\mbox{CH}}_{2}{\mbox{Cl}}_{2}}} и др. Смешивание с растворителями, проявляющими восстановительные свойства, может привести к воспламенению и взрыву. С водой хлорная кислота смешивается в любых соотношениях и образует ряд гидратов HClO 4 ×nH 2 {\displaystyle {{\mbox{HClO}}_{4}{\mbox{×nH}}_{2}}} O {\displaystyle O} (где n = 0,25…4). Моногидрат HClO 4 H 2 {\displaystyle {{\mbox{HClO}}_{4}{\mbox{ H}}_{2}}} O {\displaystyle O} имеет температуру плавления +50 о С. Концентрированные растворы хлорной кислоты, в отличие от безводной кислоты, обладают маслянистой консистенцией. Водные растворы хлорной кислоты устойчивы, имеют низкую окислительную способность. Хлорная кислота с водой образует азеотропную смесь , кипящую при 203 °C и содержащую 72 % хлорной кислоты. Растворы хлорной кислоты в хлорсодержащих углеводородах являются сверхкислотами (суперкислотами) . Хлорная кислота является одной из сильнейших неорганических кислот, в её среде даже кислотные соединения ведут себя как основания, присоединяя протон и образуя катионы ацилперхлоратов: P(OH) 4 {\displaystyle {{\mbox{P(OH)}}_{4}}} + − , NO 2 {\displaystyle {{\mbox{NO}}_{2}}} + ClO 4 {\displaystyle {{\mbox{ClO}}_{4}}} − .

При слабом нагревании при пониженном давлении смеси хлорной кислоты с фосфорным ангидридом , отгоняется бесцветная маслянистая жидкость - хлорный ангидрид :

2 H C l O 4 + P 4 O 10 → C l 2 O 7 + H 2 P 4 O 11 {\displaystyle {\mathsf {2HClO_{4}+P_{4}O_{10}\rightarrow Cl_{2}O_{7}+H_{2}P_{4}O_{11}}}}

Соли хлорной кислоты называются перхлоратами.

Получение

  • Водные растворы хлорной кислоты получают электрохимическим окислением соляной кислоты или хлора, растворённых в концентрированной хлорной кислоте, а также обменным разложением перхлоратов натрия или калия сильными неорганическими кислотами.
  • Безводная хлорная кислота образуется при взаимодействии перхлоратов натрия или калия с концентрированной серной кислотой, а также водных растворов хлорной кислоты с олеумом :
K C l O 4 + H 2 S O 4 → K H S O 4 + H C l O 4 {\displaystyle {\mathsf {KClO_{4}+H_{2}SO_{4}\rightarrow KHSO_{4}+HClO_{4}}}}

Применение

  • Концентрированные водные растворы хлорной кислоты широко используются в аналитической химии, а также для получения перхлоратов.
  • Хлорная кислота применяется при разложении сложных руд, при анализе минералов, а также в качестве катализатора.
  • Соли хлорной кислоты: перхлорат калия малорастворим в воде, применяется в производстве взрывчатых веществ, перхлорат магния (ангидрон) - осушитель.

Безводную хлорную кислоту нельзя длительно хранить и перевозить, так как при хранении в обычных условиях она медленно разлагается, окрашивается оксидами хлора, образующимися при её разложении, и может самопроизвольно взрываться. Зато её водные растворы вполне устойчивы.

Хлор образует четыре кислородсодержащие кислоты: хлорнотистую, хлористую, хлорноватую и хлорную.

Хлорноватистая кислота НСlO образуется при взаимодействии хлора с водой, а также ее солей с сильными минеральными кислотами. Она относится к слабым кислотам, очень неустойчива. Состав продуктов реакции ее разложения зависит от условий. При сильном освещении хлорноватистой кислоты, наличии в растворе восстановителя, а также длительном стоянии она разлагается с выделением атомарного кислорода: НСlO = HСl + O

В присутствии водоотнимающих веществ образуется оксид хлора (I): 2 НСlO = 2 Н2О + Сl2O

Поэтому при взаимодействии хлора с горячим раствором щелочи образуется соли не соляной и хлорноватистой, а соляной и хлорноватой кислот: 6 NаОН + 3 Сl2 = 5 NаСl + NаСlО3 + 3 Н2О

Соли хлорноватистой кислоты - г и п о х л о р и т ы - очень сильные окислители. Они образуются при взаимодействии хлора со щелочами на холоду. Одновременно образуются соли соляной кислоты. Из таких смесей наибольшее распространение получили хлорная известь и жавелевая вода.

Хлористая кислота НСlO2 образуется при действии концентрированной серной кислоты на хлориты щелочных металлов, которые получаются как промежуточные продукты при электролизе растворов хлоридов щелочных металлов в отсутствие диафрагмы между катодным и анодным пространствами. Это слабая, неустойчивая кислота, очень сильный окислитель в кислой среде. При взаимодействии ее с соляной кислотой выделяется хлор: НСlO2 + 3 НС1 = Сl2 + 2 Н2О

Хлорноватая кислота НСlO3 образуется при действии на ее соли -х л о р а т ы - серной кислоты. Это очень неустойчивая кислота, очень сильный окислитель. Может существовать только в разбавленных растворах. При упаривании раствора НСlO3 при низкой температуре в вакууме можно получить вязкий раствор, содержащий около 40 % хлорной кислоты. При более высоком содержании кислоты раствор разлагается со взрывом. Разложение со взрывом происходит и при меньшей концентрации в присутствии восстановителей. В разбавленных растворах хлорная кислота проявляет окислительные свойства, причем реакции протекают вполне спокойно:

НСlO3 + 6 НВr = НСl + 3 Вr2 + 3 Н2О

Соли хлорноватой кислоты - хлораты - образуются при электролизе растворов хлоридов в отсутствие диафрагмы между катодным и анодным пространствами, а также при растворении хлора в горячем растворе щелочей, как показано выше. Образующийся при электролизе хлорат калия (бертолетова соль) слабо растворяется в воде и в виде белого осадка легко отделяется от других солей. Как и кислота, хлораты - довольно сильные окислители:

КСlO3 + 6 НСl = КСl + 3 Сl2 + 3 Н2О

Хлораты применяются для производства взрывчатых веществ, а также получения кислорода в лабораторных условиях и солей хлорной -кислоты - п е р х л о р а т о в. При нагревании бертолетовой соли в присутствии диоксида марганца МпО2, играющего роль катализатора, выделяется кислород. Если же нагревать хлорат калия без катализатора, то он разлагается с образованием калиевых солей хлороводородной и хлорной кислот:

2 КСlО3 = 2 КСl + 3 O2

4 КСlO3 = КСl + 3 КСlO4

При обработке перхлоратов концентрированной серной кислотой можно получить хлорную кислоту:

КСlO4 + Н2SO4 = КНSO4 + НСlO4

Это самая сильная кислота. Она наиболее устойчива из всех кислород содержащих кислот хлора, однако безводная кислота при нагревании, встряхивании или контакте с восстановителями может разлагаться со взрывом. Разбавленные растворы хлорной кислоты вполне устойчивы и безопасны в работе. Хлораты калия, рубидия, цезия, аммония и большинства органических оснований плохо растворяются в воде.

В промышленности перхлорат калия получают электролитическим окислением бертолетовой соли:

2 Н+ + 2 е- = Н2­ (на катоде)

СlО3- - 2 е- + Н2О = СlO4- + 2 Н+ (на аноде)

Биологическая роль.

он относится к жизненно необходимым незаменимым элементам. В организме человека 100 г.

Ионы хлора играют весьма важную биологическую роль. Входя вместе с ионами К+, Mg2+, Са2+, НСО~, Н3Р04 и белками играют главенствующую роль в создании определенного уровня осмотического давления (осмотический гомеостаз) плазмы крови, лимфы, спиномозговой жидкости и т. д.

Хлор-ион участвует в регуляции водно-солевого обмена и объема жидкости, удерживаемой тканями, подержании рН внутриклеточной жидкости и мембранного потенциала, создаваемого работой натрий-калиевого насоса, что объясняется (как и в случае его участия в осмосе) способностью диффундировать через клеточные мембраны подобно тому, как это делают ионы Na+, К+. Ион хлора - необходимый компонент (совместно с ионами Н2Р04, HSO4, ферментами и др.) желудочного сока, входящий в состав соляной кислоты.

Способствуя пищеварению, соляная кислота уничтожает и разнообразные болезнетворные бактерии.

Хлорноватистая кислота в свободном виде не выделена, образуется при взаимодействии хлора с водой, существует в растворе, максимальная массовая доля 20 – 25% (зеленовато-желтый раствор), слабая кислота. Однако является сильным окислителем, хлорноватистая кислота более сильный окислитель, чем хлор. Например: HClO + 2HI = I2 + HCl + H2O или HClO + H 2 O 2 = O 2 + HCl + H 2 O.

При действии света – разлагается: HClO = HCl + O.

В присутствии водоотнимающих веществ образуется оксид хлора (I), который является ангидридом хлорноватистой кислоты: 2HClO = H 2 O + Cl 2 O.

В водном растворе хлорноватистая кислота разлагается с образованием двух кислот – соляной и хлоноватой (диспропорционирование): 3HClO = 2HCl + HClO 3 . Данная реакция идёт медленно, далее следует вторичный процесс: 5HCl + 2HCl = 3Cl 2 + 3H 2 O.

Взаимодействует со щелочами, образуя соли – гипохлориты: HClO + NaOH = NaClO + H 2 O. Гипохлориты сильные окислители.

Хлористая кислота HClO 2

Образуется при действии концентрированной серной кислоты на хлориты щелочных металлов. В свободном виде не выделена, существует в разбавленном растворе, проявляет окислительные свойства. Например: HClO 2 + 3HCl = 2Cl 2 + 2H 2 O; HClO 2 + 4HI = HCl + 2I 2 + 2H 2 O.

Хлористая кислота очень неустиойчива, даже в разбавленном водном растворе она разрушается (диспропорционирует):

4HClO 2 = HCl + HClO 3 + 2ClO 2 + H 2 O.

Поэтому на промышленных предприятиях её изготавливают непосредственно перед использованием, а не транспортируют с химических заводов.

Хлорит натрия NaClO 2 используется для получения диоксида хлора, при обеззараживании воды, а также как отбеливающий агент.

Хлорноватая кислота HClO 3

В свободном виде не выделена. Образуется при действии на её соли – хлораты – серной кислоты. Это очень неустойчивая кислота, может существовать только в растворах, максимальная массовая доля кислоты в них 40%. Очень сильный окислитель:

HClO 3 (конц.) + 5HCl(конц.) = 3Cl 2 + 3H 2 O

6HClO 3 (разб.) + 5HI(конц.) = 3Cl 2 + 3H 2 O + HCl.

Соли хлорноватой кислоты – хлораты – образуются при электролизе растворов хлоридов в отсутствии диафрагмы между катодным и анодным пространствами, а также при растворении хлора в горячем растворе щелочей.

Хлорат калия (бертолетова соль) слабо растворяется в воде и в виде белого осадка легко отделяется от других солей. Как и кислота хлораты довольно сильные окислители:

FeSO 4 + KClO 3 + 3H 2 SO 4 = 3Fe 2 (SO 4) 3 + KCl + 3H 2 O,

2KClO 3 + 3S = 2KCl + 3SO 2 .

Хлораты применяются для производства взрывчатых веществ, а также получения кислорода в лаборатории и солей хлорной кислоты – перхлоратов. Например: 4KClO 3 = KCl + 3KClO 4 (реакция идёт без катализпатора).

Хлорная кислота HClO 4

При обработке перхлоратов концентрированной серной кислотой можно получить хлорную кислоту: KClO 4 + H 2 SO 4 = KHSO 4 + HClO 4 .

Это самая сильная кислота. Она наиболее устойчива из всех кислородных кислот хлора, однако безводная кислота при нагревании, при встряхивании или контакте с восстановителями может разлагаться со взрывом. Разбавленные растворы хлорной кислоты вполне устойчивы и безопасны в работе.

Хлорная кислота реагирует со щелочами образуя соли:

HClO 4 (разб.) + NaOH (разб.) = NaClO 4 + H 2 O.

Проявляет сильные окислительные свойства в разбавленных и концентрированных растворах. Например:

HClO 4 + 4SO 2 + 4H 2 O = 4H 2 SO 4 + HCl.

Характер изменения свойств в ряду кислородсодержащих кислот хлора позволяет сделать вывод, что сила кислот, а также их устойчивость возрастают с изменением степени окисления хлора, а их окислительная способность уменьшается, что можно показать следующей схемой:

____УСИЛЕНИЕ КИСЛОТНЫХ СВОЙСТВ, ПОВЫШЕНИЕ УСТОЙЧИВОСТИ ______________

______________HClO, HClO 2 , HClO 3 , HClO 4 ___________________

УСИЛЕНИЕ ОКИСЛИТЕЛЬНОЙ СПОСОБНОСТИ

Наиболее сильный окислитель кислота HClO, наименее сильный – хлорная кислота, но она же – самая сильная из существующих кислот.

Бромная кислота НBrO 4 в свободном состоянии не получена. Она стабильна только в водных растворах, имеющих концентрацию 55%. Её окислительные свойства выражены сильнее, чем у хлорной кислоты.

Йодная кислота H 5 IO 6 – гигроскопическое кристаллическое вещество, хорошо раствоимое в воде. Это слабая 5-ти основная кислота в водном растворе. При её нейтрализации получаются кислые соли.

ЭЛЕМЕНТЫ VI A ГРУППЫ

Элементы кислород О, сера S, селен Se, теллур Те и полоний Ро, входящие в VI A группу называют халькогенами (образующие руды, греч.). Полоний радиоактивный металл. Кислород и сера являются типическими элементами VI A группы; остальные элементы объединяют в подгруппу селена (Se, Te, Po).

В основном состоянии атомы халькогенов имеют конфигурацию ns 2 np 4 с двумя неспаренными р -электронами. Поэтому эти элементы проявляют стремление к дополнению электронами внешнего уровня до октета.

В ряду O – S – Se – Te – Po увеличиваются радиусы атомов, понижаются величины энергии ионизации и относительная электроотрицательность. Следовательно, от кислорода к полонию в подгруппе понижается окислительная активность элементов. Неметаллические свойства халькогенов при переходе от кислорода к полонию ослабляются. Кислород и сера – типичные неметаллы, у теллура появляются металлические свойства, а полоний – металл.

Для элементов VI A группы способность к комплексообразованию выражена слабо. С увеличением порядкового номера у элементов возрастают координационные числа. Для серы и селена они равны 3 и 4, у теллура – 6 и даже 8. Это связано с тем, что при переходе от серы к теллуру в образовании σ- и π-связей всё большую роль начинают играть d- и f-орбитали.

Кислород

Атом кислорода в основном состоянии имеет электронную кофигурацию внешнего уровня 2s 2 2p 4 c двумя неспаренными электронами и двумя неподелёнными электронными парами. По своей электроотрицацельности (3,5) кислород занимает 2-ое место после фтора. Это означает, что во всех своих соединениях (кроме фторидов) кислород может находиться только в состоянии с отрицательной степенью окисления .

Кислород самый распространённый элемент на Земле, на его долю приходится 49,5% общей массы земной коры. Считается, что в процессе образования планеты Земля кислород был полностью связан в соединения. Наличие его в атмосфере обусловлено жизнедеятельностью растений – эндотермической реакцией фотосинтеза, протекающей за счёт энергии солнечного излучения: 6СО 2 + 6Н 2 О = С 6 Н 12 О 6 + 6О 2 .

Существуют две аллотропные модификации элемента кислорода: это устойчивая форма простого вещества О 2 дикислорода (молекулярный кислород) и трикислород О 3 – озон.

Кислород – бесцветный газ без запаха и вкуса. Межмолекулярные связи в кислороде слабы, и он конденсируется в голубую жидкость лишь при -183 0 С. Т пл = - 219 0 С. Энергия связи в устойчивой молекуле О 2 довольно велика 494 кДж/моль.

Получение О2.

В промышленности кислород получают ректификацией жидкого воздуха. Первым улетучивается азот (Т кип = -195,8 0 С). Хранят кислород в баллонах голубого цвета под давлением 15 МПа.

В лабораторных условиях кислород получают проводя реакции внутримолекулярного окисления-восстановления солей кислородсодержащих кислот и оксидов или диспропорционирования пероксидов:

2ВаО 2 = 2ВаО + О 2 (800 0 С); 2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2 (t 0)

2H 2 O 2 = 2H 2 O + O 2 (t 0 , MnO 2); 2KClO 3 = 2KCl + 3O 2 (t 0 , MnO 2).

Химические свойства

Молекула О 2 устойчива, энергия связи в устойчивой молекуле О 2 довольно велика 494 кДж/моль. Однако кислород обладает высокой химической активностью, особенно при нагревании (200 – 400 0 С) и в присутствии катализатора. Реакции с участием кислорода, как правило, экзотермичны и во многих случаях протекают в режиме горения – самоподдерживающегося процесса, сопровождающегося выделением теплоты и света в форме пламени. Он взаимодействует непосредственно со всеми простыми веществами, кроме галогенов, благородных металлов Ag, Au, Pt и благородных газов, образуя оксиды. Наиболее активные металлы (K, Rb, Cs) образуют с ним надпероксиды ЭО 2 , а Na пероксид Na 2 O 2 . Кислород окисляется только при взаимодействии с фтором.

4Р + 5О 2 = Р 4 О 10 ; С + О 2 = СО 2 ; S + O 2 = SO 2 ; O 2 + 2Mg = 2MgO;

O 2 + 2Ca = 2CaO; 4Li + O 2 = 2Li 2 O; O 2 + 2Na = Na 2 O 2 ; K + O 2 = KO 2 ;

В некоторых случаях скорость взаимодействия так велика (цепные реакции), что происходит взрыв. Например, со взрывом реагируют смеси кислорода с водородом, метаном, оксидом углерода (II):

2Н 2 + О 2 = 2Н 2 О + Q; CH 4 + 2O 2 = CO 2 + 2H 2 O + Q; CO + 0,5O 2 = CO 2 + Q.

Взрывоопасны смеси воздуха с угольной пылью, с мукой и другими горючими взрывоопасными веществами.

В земных условиях именно взаимодействие с атмосферным кислородом того или иного вещества определяет возможность его существования, использования, хранения. Так, например, триметилалюминий {Al(CH 3) 3 } самовозгорается на воздухе и его существование в контакте с воздухом невозможно; углеводороды не самовозгораются, но горят на воздухе и могут быть использованы как источник энергии; серебро изолото не реагируют с кислородом и поэтому встречаются в самородном состоянии, но многие металлы (щелочные, щелочноземельные, лантаноиды) быстро окисляются и могут храниться только без доступа воздуха.

ОЗОН (Озон открыл в 1840 году Х. Шёнбейн)

Озон (О 3) – газ синего цвета, в жидком состоянии тёмносиний, в твёрдом сине-фиолетовый. По своим свойствам сильно отличается от молекулярного кислорода. Поскольку молекула О 3 обладает большей полярностью и поляризуемостью, озон имеет более высокую температуру кипения (-111,9 0 С), чем кислород. Этим же объясняется большая интенсивность окраски озона и лучшая его растворимость в воде.

Молекула озона (О 3) имеет уголковую конфигурацию:

О 0,128 нм

О116,50О

Длина связи в молекуле ближе к длине двойной связи О = О (0,121 нм), чем к одинарной О – О (0,149 нм), что свидетельствует о неравноценности атомов и позволяет приписать центральному атому степень окисления +4. Озон термодинамически неустойчив: 2О 3 = 3О 2 ∆G 0 298 = - 325 кДж/моль.

В природе он образуется при грозовых разрядах и за счёт фотохимических реакций, идущих под действием ультрафиолетового излучения Солнца. Образование озона в атмосфере происходит в результате реакций: О 2 → О + О, О + О 2 → О 3 . Поэтому в верхних слоях атмосферы существует область с повышенным содержанием озона – озоновый слой, который имеет исключительно важное экологическое значение: озоновый слой задерживает наиболее губительную для живых организмов и растений часть УФ радиации Солнца с длиной волны 300 нм, наряду с СО 2 озон поглощает ИК излучение Земли, препятствует её охлаждению.

В лабораториях получают озон действием тихого электрического разряда на сухой кислород.

2Ag + O 3 = Ag 2 O + O 2 ; PbS + 4O 3 = PbSO 4 + 4O 2 ;

Для количественного определения озона используют реакцию: 2KI + O 3 + H 2 O = I 2 + 2KOH + O 2 .

Сродство к электрону у озона около 180 кДж/моль, поэтому он может переходить в озонид- ион О 3 ‾ . В частности, при действии озона на щелочные металлы образуются озониды : К + О 3 = КО 3 . Озониды это соединения, состоящие из положительных ионов-металлов и отрицательных ионов О 3 ‾ .

Как сильный окислитель озон используется для очистки питьевой воды, для дезинфекции воздуха, в различных синтезах (получение камфоры, ванилина и др. веществ).

Пероксид водорода

Поскольку связь в молекуле О 2 кратная, возможно существование соединений, в которых одна из связей О – О сохраняется. Эта так называемая пероксидная группировка существует в пероксиде водорода Н 2 О 2 , пероксиде натрия Na 2 O 2 и целом ряде других соединений. Присоединяя два электрона молекула О 2 превращается в пероксид-ион О 2 2- , в котором атомы связаны одной двухэлектронной связью.

Наибольшее практическое значение имеет пероксид водорода. Строение молекулы этого соединения показано ниже на схеме:

О ──────О 0,095 нм

Энергия связи О – О (210 кДж/моль) почти в два раза меньше энергии связи О – Н (468 кДж/моль).

Из-за несимметричного распределения связей Н – О молекула Н 2 О 2 сильно полярна. Между молекулами пероксида возникает довольно прочная водородная связь, приводящая к их ассоциации. Поэтому в обычных условиях пероксид водорода – сиропообразная жидкость (ρ = 1,44 г/мл) с довольно высокой температурой кипения (Т пл = 0,41 0 С; Т кип = 150,2 0 С). Она имеет бледно-голубую окраску. С водой смешивается в любых отношениях благодаря возникновению новых водородных связей. В лабораториях пользуются обычно 3% и 30% растворами пероксида (последний называют пергидролем ).

В водных растворах Н 2 О 2 – слабая кислота: Н 2 О 2 + Н 2 О = Н 3 О + + НО 2 ‾ (рК=11,62).

Чаще всего протекают реакции, в которых в пероксиде водорода рвётся связь О – О. В этом случае пероксид проявляет свойства окислителя:

2KI + H 2 O 2 + H 2 SO 4 = I 2 + K 2 SO 4 + 2H 2 O;

H 2 O 2 + FeSO 4 + H 2 SO 4 = Fe 2 (SO 4) 3 + 2H 2 O;

4 H 2 O 2 + PbS = PbSO 4 + 4H 2 O.

При взаимодействии с очень сильными окислителями пероксид проявляет свойства восстановителя:

5 H 2 O 2 + 3H 2 SO 4 + 2KMnO 4 = 5O 2 + K 2 SO 4 + 2MnSO 4 + 8H 2 O

(данную реакцию используют при химическом анализе для определения содержания Н 2 О 2 в растворе).

Пероксидная группа из двух атомов кислорода – О – О – входит в состав очень многих веществ. Такие вещества называют пероксидными соединениями. К ним относятся пероксиды металлов (Na 2 O 2 , BaO 2 и др.), которые можно рассматривать как соли пероксида водорода. Кислоты, содержащие пероксидную группу, называют пероксокислотами (или надкислотами), их примерами являются пероксомонофосфорная и пероксодисерная кислоты:

О = Р – ОН НО – S – O – O – S – OH

Все пероксидные соединения являются окислителями (часто более сильными, чем Н 2 О 2). При небольшом нагревании они разлагаются с выделением кислорода.

Пероксид водорода используют, главным образом, в качестве окислителя при отбеливании тканей, дезинфекции, как антисептик.

Сера и её соединения

Сера 15-тый по распространённости в природе элемент. Символ химического элемента серы – S, атомный номер 16, относительная атомная масса А r (S) = 32,066 (в химических расчётах принимается равной 32,0).

В природе сера встречается в самородном состоянии, в виде и сульфидов и сульфатов (они присутствуют в морской и речной воде). Сера присутствует и в составе живых организмов в различных соединениях, проявляя степень окисления равную –2 (аминокислоты белков, цистеин, цистин, метионин, липиды и т.д.).

В природе сера представлена четырьмя стабильными изотопами: 32 S (95084%), 33 S (0,74%), 34 S (4,16%) и 36 S (0,016%).

Для серы известно пять кристаллических аллотропных модификаций. Важнейшие: а) ромбическая сера, (её кристаллы построены из молекул S 8), б) моноклинная сера (переход ромбической серы в моноклинную происходит при 95 0 С, молекулы её тоже состоят из 8 атомов серы, но кристаллическая структура делается несколько иной), в) пластическая сера получается при резком охлаждении расплавленной серы. Она состоит из зигзагообразных цепей состава S m . Эта форма неустойчива и быстро переходит в ромбическую серу. В парах сера является смесю молекул различного состава S, S 2 , S 4 , S 6 , S 8 . С ростом температуры уменьшается число больших молекул. Устойчивые молекулы серы состоят из чётного числа атомов. Газообразная сера при 2000 0 С состоит только из отдельных атомов.

Электронная конфигурация атома серы 1s 2 2s 2 2p 6 3s 2 3p 4 . Распределение электронов на внешнем (валентном) уровне можно представить следующей схемой:

Благодаря наличию свободных d-орбиталей степень окисления серы меняется от –2 до +6. В соединениях координационное число серы обычно равно 4 (sp 3 -гибридизация, но бывает и 6 (sp 3 d 2 -гибридизация). Наиболее характерные валентности: II, IV и VI. Электроотрицательность серы равна 2,58.

Два неспаренных электрона на р-подуровне делают возможным: а) образовывать молекулы S 2 с кратной связью; б) образовывать цепочечные структуры. Энергетически наиболее выгодным является образование молекулы S 8 (это восьмиугольник, имеющий коронообразную форму). Из молекул S 8 построена самая устойчивая в стандартных условиях аллотропная модификация серы – ромбическая.

Физические и химические свойства серы

При стандартных условиях сера либо порошок желтого цвета, либо кристаллическое вещество желтого цвета. В воде сера не растворима, несколько лучше растворяется в бензине, спиртах, особенно хорошо в сероуглероде и жидком аммиаке. Сера плохо проводит теплоту и электрический ток.

Сера – типичный неметалл, но её неметаллические свойства выражены слабее, чем у кислорода. Поэтому сера образует меньше соединений с ионным типом связи, чем кислород.

На холоду сера взаимодействует только с фтором, хлором и ртутью. Жидкая и парообразная сера проявляет высокую реакционную способность, она реагирует со многими химическими элементами (исключение: азот, золото, платина и благородные газы).

Сера может проявлять свойства окислителя:

S 0 + Fe = FeS 2-

S 0 + 2e → S 2-

Fe 0 – 2e → Fe 2+

При взаимодействии со многими неметаллами сера является восстановителем:

S 0 – 4e → S 4+

2O 0 + 4e → 2O -2

Кроме того, сера может диспропорционировать:

3S + 6KOH = K 2 SO 3 + 2K 2 S + 3H 2 O

S 0 – 4e → S +4

S 0 + 2e → S -2

I. Взаимодействие серы с простыми веществами:

а) взаимодействие с металлами:

3S + 2Al = Al 2 S 3 (t › 200 0 C),

S + Hg → HgS (комнатная температура).

б) Взаимодействие серы с неметаллами:

S + H 2 → H 2 S,

S + 3F 2 = SF 6 ,

2S + Cl 2 → S 2 Cl 2 (t = 130 0 C),

S + O 2 → SO 2 (t› 280 0 C),

3S + 2P → P 2 S 3 ,

2S + C → CS 2 (t = 800 0 C),

2S + Si → SiS 2 (t › 250 0 C).

II. Взаимодействие серы со сложными веществами

При нагревании сера взаимодействует с водяным паром, концентрированными кислотами окислителями и со щелочами:

3S + 2H 2 O (пар) = 2H 2 S + SO 2 ,

S + 2H 2 SO 4 (конц.) = 3SO 2 + 2H 2 O,

S + 6HNO 3 (конц.) = 6NO 2 + H 2 SO 4 + 2H 2 O,

3S + 6NaOH = Na 2 SO 3 + 2Na 2 S + 3H 2 O.

СЕРОВОДОРОД

Сероводород – бесцветный газ, имеет характерный запах гниющего белка (“запах тухлых яиц”). В воде при 20 0 С растворяется 2,5 л сероводорода в 1 литре воды. Водный раствор сероводорода проявляет кислотные свойства и называется сероводородной кислотой или сероводородной водой. Сероводородная кислота – слабая, двухосновная и бескислородная кислота.

Рассмотрим свойства сероводорода в двух аспектах: а) окислительно-восстановительные свойства; б) кислотно-основные.

Окислительно-восстановительные свойства . В молекуле сероводорода атом серы проявляет низшую степень окисления, равную –2. Поэтому сероводород проявляет свойства восстановителя:

2H 2 S + O 2 (недост.) = 2S + 2H 2 O,

2H 2 S + 3O 2 = 2SO 2 + 2H 2 O,

H 2 S + 4Cl 2 + 4H 2 O = H 2 SO 4 + 8HCl,

H 2 S + Br 2 = S↓ + 2HBr,

H 2 S + I 2 = S + 2HI,

H 2 S + H 2 SO 4 (конц.) =S↓ + SO 2 + 2H 2 O (комн. тем.),

H 2 S + 3H 2 SO 4 (конц.) = 4SO 2 + 4H 2 O (кип.),

H 2 S + 8HNO 3 (конц.) = H 2 SO 4 + 8NO 2 + 4H 2 O (кип.),

H 2 S + 2HNO 3 (конц. хол.) = S↓ + 2NO 2 + 2H 2 O,

3H 2 S + 8HNO 3 = 3H 2 SO 4 + 8NO + 4H 2 O,

3H 2 S + 4HClO 3 = 3H 2 SO 4 + 4HCl,

H 2 S + 4Br 2 + 4H 2 O = H 2 SO 4 + 8HBr.

Недостаточные количества даже сильных окислителей, а также слабые окислители окисляют ион S 2- до S 0:

5H 2 S + 2KMnO 4 + 3H 2 SO 4 = 5S + 2MnSO 4 + K 2 SO 4 + 8H 2 O,

3H 2 S + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3S↓ + Cr 2 (SO 4) 3 + K 2 SO 4 + 7H 2 O,

2H 2 S + SO 2 = 3S + 2H 2 O,

H 2 S + I 2 = S + 2HI.

Рассмотрим теперь свойства сероводородной кислоты. Cероводородная кислота, являясь кислотой двухосновной, диссоциирует ступенчато:

H 2 S ↔ H + + HS ‾ ,

HS ‾ ↔ H + + S 2- .

Константа второй ступени диссоциации так мала, что практически не влияет на кислотные свойства Н 2 S, но определяет чрезвычайно большую склонность иона S 2- к гидролизу:

Поэтому растворы сульфидов имеют сильнощелочную реакцию.

Сероводородная кислота проявляет все свойства кислот: изменяет окраску индикаторов, взаимодействует с металлами, основными оксидами, щелочами и солями. Например:

H 2 S + Mg = MgS + H 2 ,

H 2 S + MgO = MgS + H 2 O

H 2 S + NaOH = NaHS + H 2 O,

H 2 S + 2NaOH = Na 2 S + 2H 2 O,

H 2 S + CuSO 4 = CuS↓ + H 2 SO 4 .

Сероводородной кислоте соответствуют два вида солей: а) кислые – гидросульфиды (KHS), б) средние (Na 2 S). Гидросульфиды растворимы в воде и существуют только в растворах. Сульфиды щелочных и щелочноземельных металлов и аммония растворимы в воде, а сульфиды остальных металлов не растворимы. Растворимые сульфиды в водных растворах подвергаются гидролизу, среда раствора – щелочная:

K 2 S + H 2 O ↔ KHS + KOH,

S 2- + H 2 O ↔ HS ‾ + OH ‾ .

Катионы очень слабых оснований (Al 3+ или Cr 3+) не могут быть осаждены в водном растворе в виде сульфидов вследствие полного гидролитического разложения сульфидов этих металлов:

2AlCl 3 + 3Na 2 S + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S + 6NaCl,

Cr 2 O 3 + 6H 2 O = 2Cr(OH) 3 ↓ + 3H 2 S.

Cульфиды некоторых металлов не растворимы в кислотах неокислителях, но растворимы в концентрированной азотной кислоте или в царской водке (смесь азотной и соляной кислот в соотношении 1: 3):

3CuS + 8HNO 3 = 3CuSO 4 + 8NO + 4H 2 O,

3HgS + 8HNO 3 + 6HCl = 3HgCl 2 + 3H 2 SO 4 + 8NO + 4H 2 O.

Оксид серы (IV)

Оксид серы (IV) (или диоксид серы, сернистый ангидрид) – SO 2 – бесцветный газ с резким запахом, термически устойчивый. При 20 0 С в 1 литре воды растворяется 40 л диоксида серы.

Оксид серы (IV) – кислотный оксид. При взаимодействии с водой он образует сернистую кислоту, а реагируя с растворами щелочей – соли:

SO 2 + H 2 O ↔ H 2 SO 3 ,

SO 2 + NaOH = NaHSO 3 ,

SO 2 + 2NaOH = Na 2 SO 3 + H 2 O.

При взаимодействии с основными оксидами также образуются соли:

SO 2 + CaO = CaSO 3 .

Оксид серы (IV) и сернистая кислота содержат в своей молекуле своей молекуле атом серы в промежуточной степени окисления (+4), поэтому для этих соединений характерны окислительно-восстановительные свойства.

Окислительные свойства проявляются в реакциях с сильными восстановителями:

Na 2 SO 3 + 2Na 2 S + 3H 2 SO 4 = 3S + 3Na 2 SO 4 + 3H 2 O,

SO 2 + 2H 2 S = 3S + 2H 2 O,

H 2 SO 3 + 2H 2 S = 3S↓ + 3H 2 O,

SO 2 + C = S + CO 2 (t = 600 0 C),

SO 2 + 2CO = S + 2CO 2 ,

SO 2 + 6H 0 (Pt-чернь) → H 2 S + 2H 2 O.

Восстановительные свойства соединений серы (IV) проявляются при взаимодействии с сильными окислителями:

2SO 2 + O 2 = 2SO 3 ,

SO 2 + O 3 = SO 3 + O 2 ,

SO 2 + 3F 2 = SF 6 + O 2 ,

2H 2 SO 3 + O 2 = 2H 2 SO 4 ,

SO 2 + Сl 2 + 2H 2 O = H 2 SO 4 + 2HCl,

H 2 SO 3 + Br 2 + H 2 O = H 2 SO 4 + 2HBr,

SO 2 + 2HNO 3 (конц. гор.) = H 2 SO 4 + 2NO 2 ,

5SO 2 + 2H 2 O + 2KMnO 4 = 2H 2 SO 4 + 2MnSO 4 + K 2 SO 4 .

5Na 2 SO 3 + 2KMnO 4 + 3H 2 SO 4 =5Na 2 SO 4 + 2MnSO 4 + K 2 SO 4 + 3H 2 O.

Сульфиты при нагревании диспропорционируют:

4Na 2 SO 3 → Na 2 S + 3Na 2 SO 4 (t › 600 0 C)

Оксид серы может участвовать в реакциях без изменения степени окисления атома серы:

SO 2 + MgO = MgSO 3 ,

SO 2 + 2NH 3 ∙H 2 O (конц.) = (NH 4) 2 SO 3 ,

SO 2 + NH 3 ∙H 2 O (разб.) = NH 4 HSO 3 .

Оксид серы соединение токсичное, так как проявляет окислительные свойства в реакциях с восстановителями, а в реакциях с окислителями – восстановительные. Существует биохимический механизм детоксикации сульфит-иона с участием фермента сульфитоксидазы.

Оксид серы (IV) накапливается в атмосфере и особенно сильно в промышленных районах. При высокой влажности воздуха образуется туман, содержащий сернистую и серную кислоты, сажу и пыль. Поэтому в отсутствии ветра над отдельными районами появляется токсический смог , который вызывает поражения легких и даже гибель людей.

Получение SO 2:

а) в промышленности – обжиг пирита:

4FeS 2 + 11O 2 = 8SO 2 + 2Fe 2 O 3 .

б) в лаборатории:

Na 2 SO 3 + H 2 SO 4 = SO 2 + Na 2 SO 4 + H 2 O,

Cu + 2H 2 SO 4 = SO 2 + CuSO 4 + H 2 O.

Применение : SO 2 используется в производстве серной кислоты, для отбеливания тканей, как дезинфицирующее средство, консервирующее средство при производстве сухофруктов. Газ SO 2 убивает многие микроорганизмы, поэтому его используют для уничтожения плесневых грибков в сырых помещениях, подвалах, погребах, бродильных чанах, винных бочках. Использую диоксид серы для лечения домашних животных от часотки.

Водный раствор диоксида серы называется сернистой кислотой. Эта кислота существует только в растворе, является кислотой средней силы, диссоциирует ступенчато:

H 2 SO 3 ↔ H + + HSO 3 ‾ ,

HSO 3 ‾ ↔ H + + SO 3 2 ‾ .

Соли сернистой кислоты называются сульфитами. В соответствии с диссоциацией она бразует кислые соли – гидросульфиты (NaHSO 3) и средние – сульфиты (Na 2 SO 3). Для сернистой кислоты характерны все реакции кислот:

H 2 SO 3 + KOH = KHSO 3 + H 2 O,

H 2 SO 3 + 2KOH = K 2 SO 3 + 2H 2 O,

H 2 SO 3 + Na 2 SiO 3 = Na 2 SO 3 + H 2 SiO 3 ↓,

H 2 SO 3 + Na 2 CO 3 = Na 2 SO 3 + H 2 O + CO 2 .

Средние соли переводятся в кислые, действием избытка SO 2 на растворы средних солей:

Na 2 SO 3 + SO 2 + H 2 O = 2NaHSO 3 ,

Кислые соли переводятся в средние реакциями со щелочами:

NaHSO 3 + NaOH = Na 2 SO 3 .

Кислые и средние соли сернистой кислоты разлагаются сильными кислотами:

NaHSO 3 + HCl = NaCl + H 2 O + SO 2 ,

K 2 SO 3 + H 2 SO 4 = K 2 SO 4 + H 2 O + SO 2 .

Эта реакция является качественной реакцией на сульфиты и гидросульфиты.

Водные растворы сульфитов окисляются при нагревании кислородом воздуха в сульфаты:

2K 2 SO 3 + О 2 = 2K 2 SO 4 .

Сульфиты в водных растворах подвергаются гидролизу, среда раствора щелочная:

K 2 SO 3 + H 2 O ↔ KHSO 3 + KOH.

При гидролизе гидросульфитов создаётся слабокислая среда из – за конкуренции двух процессов:

А) гидролизом соли: HSO 3 ‾ + HOH ↔ H 2 SO 3 + OH ‾ ,

Б) диссоциацией гидросульфит-иона: HSO 3 ‾ ↔ Н + + SO 3 2- ; диссоциация протекает несколько интенсивнее, поэтому среда – слабокислая.

ОКСИД СЕРЫ (VI).

Оксид серы (VI) SO 3 (или триоксид серы или серный ангидрид) – вещество белого цвета, в твёрдом состоянии существует в виде аморфного летучего тримера ((SO 3) 3 или S 3 O 9). При повышении температуры плавится с образованием бесцветной жидкости, выше +45 0 С закипает. SO 3 – вещество ядовитое.

Триоксид серы – кислотный оксид, реагируя с водой, образует серную кислоту:

SO 3 + H 2 O = H 2 SO 4

Для серного ангидрида характерны все реакции кислотных оксидов:

SO 3 + Ba(OH) 2 = BaSO 4 ↓ + H 2 O,

SO 3 + CaO = CaSO 4 ,

SO 3 + 2NaOH(конц.) = Na 2 SO 4 + Н 2 О,

SO 3 + NaOH(разб.) = NaHSO 4 .

Оксид серы (VI) содержит серу в высшей степени окисления, поэтому обладает свойствами сильного окислителя:

SO 3 + 2KI = I 2 + K 2 SO 3

5SO 3 + 2P = 5SO 2 + P 2 O 5 ,

3SO 3 + H 2 S = 4SO 2 + H 2 O

SO 3 получают окислением оксида серы (IV) в присутствии катализатора V 2 O 5 и при температуре 500 0 С:

2 SO 2 + О 2 ↔ 2 SO 3

Очень чистый серный ангидрид получают окислением диоксида серы озоном:

SO 2 + О 3 = SO 3 + О 2 .

В лабораторных условиях небольшие количества SO 3 можно получить по реакции:

Н 2 SO 4 + P 2 O 5 = 2HPO 3 + SO 3 .

СЕРНАЯ КИСЛОТА

Серная кислота – бесцветная вязкая и гигроскопическая жидкость, термически устойчивая, но при сильном нагревании разлагается с выделением SO 3 . Серная кислота неограниченно смешивается с водой. Разбавленные растворы серной кислоты представляют собой очень сильную кислоту. При смешивании с водой выделяется большое количество энергии, так как идёт процесс образования гидратов. Жидкость вскипает, происходит разбрызгивание. Поэтому при приготовлении растворов серной кислоты нужно осторожно приливать малыми порциями серную кислоту к воде и интенсивно перемешивать раствор.

Химические свойства серной кислоты сильно зависят от её концентрации, поэтому мы рассмотрим отдельно свойства разбавленной серной кислоты и свойства концентрированной.

Разбавленная серная кислота проявляет все свойства, характерные для всех кислот:

1. Водный раствор имеет сильнокислую реакцию, поэтому индикаторы окрашиваются в соответствующие цвета (лакмус в красный, метилоранж в розовый, фенолфталеин – бесцветный).

2. Взаимодействует с основными и амфотерными оксидами, образуя соль и воду:

CuO + H 2 SO 4 (разб.) = CuSO 4 + H 2 O,

CaO + H 2 SO 4 (разб.) = CaSO 4 + H 2 O,

ZnO + H 2 SO 4 (разб.) = ZnSO 4 + H 2 O.

3. Взаимодействует с щелочами и нерастворимыми гидроксидами:

2NaOH + H 2 SO 4 = Na 2 SO 4 + H 2 O,

Cu(OH) 2 + H 2 SO 4 (разб.) = CuSO 4 + H 2 O.

1NaOH + H 2 SO 4 = NaHSO 4 + H 2 O.

4. Реагирует с солями более слабых кислот (реакции проходят по правилам реакций обмена в электролитах):

H 2 SO 4 + CaCO 3 = CaSO 4 + H 2 O + CO 2 ,

H 2 SO 4 + K 2 SiO 3 = K 2 SO 4 + H 2 SiO 3 ↓.

5. C аммиаком серная разбавленная кислота образует соли аммония:

2NH 3 + H 2 SO 4 = (NH 4) 2 SO 4 .

Окислительные свойства разбавленной серной кислоты обусловлены только ионом Н + . Единственным продуктом восстановления разбавленной серной кислоты является молекулярный водород. Такие кислоты принято называть кислотами-неокислителями.

Реагируя с металлами, разбавленная серная кислота образует ионы низшей степени окисления металла.

Свинец не реагирует с разбавленной серной кислотой, так как образующийся на поверхности сульфат свинца в кислоте не растворим.

Концентрированная серная кислота резко отличается по свойствам от разбавленной, так как проявляет свойства сильного окислителя, окислительные свойства её обусловлены ионом SO 4 2- , содержащим атом серы в высшей степени окисления +6. Окислительные свойства проявляются наиболее сильно при нагревании. Концентрированная серная кислота окисляет как металлы, стоящие в электрохимическом ряду до водорода, так и после него. Водород при этом никогда не выделяется . Продуктом восстановления кислоты, в зависимости от активности металла, могут быть SO 2 , S и H 2 S.

Рассмотрим взаимодействие концентрированной серной кислоты с медью, которое протекает в две стадии:

а) молекулы серной кислоты окисляют медь до оксида и при этом выделяется SO 2:

Cu + H 2 SO 4 = CuO + SO 2 + H 2 O;

б) образовавшийся оксид меди (II) является основным оксидом и сейчас же растворяется в серной кислоте с образованием соли и воды:

CuO + H 2 SO 4 = СuSO 4 + H 2 O.

Суммарное уравнение взаимодействия меди с концентрированной серной кислотой записывается следующим образом:

Cu + 2H 2 SO 4 = СuSO 4 + 2H 2 O + SO 2 .

С активными металлами продуктами восстановления кислоты могут быть: SO 2 , S и Н 2 S:

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + H 2 O,

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S + 4H 2 O,

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O.

Чем металл более активен, тем больше выделяется S и Н 2 S.

Можно представить схемой образование продуктов восстановления серной кислоты в зависимости от активности металлов:

Увеличение активности восстановителя

____________________________________

H 2 SO 4 (концентрированная) → SO 2 → S → H 2 S

Концентрированная серная кислота окисляет и неметаллы:

С + 2H 2 SO 4 = CO 2 + SO 2 + 2H 2 O,

2Р + 5H 2 SO 4 = 2H 3 PO 4 + 5SO 2 + 2H 2 O,

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O.

Эти реакции проходят при нагревании.

При комнатной температуре протекают следующие реакции:

8HI + H 2 SO 4 = 4I 2 + H 2 S + 4H 2 O,

2HBr + H 2 SO 4 = Br 2 + SO 2 + 2H 2 O,

H 2 S + H 2 SO 4 = S + SO 2 + 2H 2 O.

SO 2 + 2H 2 O,

На термической устойчивости и нелетучести серной кислоты основаны способы получения при нагревании более летучих кислот в лабораториях:

KClO 4 (кр.) + H 2 SO 4 (конц.) = KHSO 4 + HClO 4 ,

Ca 3 (PO 4) 2 + + H 2 SO 4 (конц.) = 3CaSO 4 + 2H 3 PO 4 ,

KNO 3 (кр.) + H 2 SO 4 (конц.) = KHSO 4 + HNO 3 ,

NaCl (кр.) + H 2 SO 4 (конц.) = NaHSO 4 + HCl,

При сильном нагревании реакции идут с образованием средних солей, например:

2NaCl (кр.) + H 2 SO 4 (кр.) = Nа 2 SO 4 + 2HCl.

При сильном нагревании не получают только азотную кислоту, так как она сама при нагревании разлагается.

Концентрированная серная кислота активно поглощает воду, поэтому сахар обугливается в концентрированной серной кислоте и древесина:

С 12 H 22 O 11 + H 2 SO 4 (конц.) = 12C + 11H 2 O∙ H 2 SO 4 ,

(C 6 H 10 O 5) n + H 2 SO 4 (конц.) = 6nC + 5nH 2 O∙ H 2 SO 4 .

На водоотнимающей способности серной кислоты основаны реакции дегидратации спиртов, протекающие при нагревании и в присутствии серной кислоты. Продуктами таких реакций являются алкены или простые эфиры:

C 2 H 5 OH → СH 2 = CH 2 + H 2 O,

C 2 H 5 OH → C 2 H 5 – O – C 2 H 5 + H 2 O.

Благодаря своим окислительныи свойствам концентрированнпая серная кислота окисляет ионы железа (II) до ионов железа (III):

FeSO 4 + 2H 2 SO 4 = SO 2 + 2H 2 O + Fe 2 (SO 4) 3 .

Качественной реакцией на ион SO 4 2- является реакция с ионом Ba 2+ , которая приводит к образованию осадка белого цвета и не растворимого ни в воде ни в кислотах:

Ba 2+ + Ba 2+ → BaSO 4 ↓.

ПОЛУЧЕНИЕ СЕРНОЙ КИСЛОТЫ И ЕЁ СОЛИ

Процесс получения серной кислоты основан на следующих химических реакциях:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 ,

2SO 2 + O 2 ↔ 2SO 3 ∆H = -284 кДж,

SO 3 + H 2 O = H 2 SO 4 .

Соли серной кислоты – сульфаты в большинстве своём бесцветные соединения, хорошо кристаллизуются, из водных растворов выделяются в виде кристаллогидратов. Сульфаты щелочных и щелочно-земельных металлов термически стойки, сульфаты же менее активных металлов при нагревании разлагаются:

ZnSO 4 → ZnO + SO 3 ,

Ag 2 SO 4 → 2Ag + SO 2 + O 2 .

Ряд солей серной кислоты используются в медицине. Например, Na 2 SO 4 ∙10H 2 O является слабительным средством, MgSO 4 ∙7H 2 O обладает слабительным и желчегонным действием, его используют при гипертонии, антисептиками являются CuSO 4 ∙5H 2 O и ZnSO 4 ∙7H 2 O. Гипс СaSO 4 ∙2H 2 O используют для изготовления гипсовых повязок. ВаSO 4 является рентгеноконтрастным веществом, поэтому используется в рентгенологии.


Похожая информация.